cover
Contact Name
Ali Awaludin
Contact Email
ali.awaludin@ugm.ac.id
Phone
+6287852654297
Journal Mail Official
jcef.ft@ugm.ac.id
Editorial Address
Jl. Grafika No.2 Kampus UGM, Yogyakarta 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Journal of the Civil Engineering Forum
ISSN : 25811037     EISSN : 25495925     DOI : https://doi.org/10.22146/jcef
Core Subject : Engineering,
JCEF focuses on advancing the development of sustainable infrastructure and disseminating conceptual ideas and implementing countermeasures, particularly in the tropics, which are vulnerable to disasters. Specifically, we look to publish articles with the potential to make real-world contributions to improving both local communities and countries readiness for and responsiveness to natural and human-made disasters. The particular emphasis of JCEF is given to the civil & environmental engineering researches associated with natural disasters such as geo-disaster (earthquake, landslide, and volcanic eruption), water-related disaster (flood, debris flow, coastal disaster, and tsunami), and human-made disasters such as soil, water, and air pollution and water scarcity. Articles describing the topics of disaster risk reduction techniques, disaster early warning system, climate change adaptation, vulnerability analysis and trends, pre and/or post-disaster reconstruction and rehabilitation planning and management, forensic engineering, the socio-engineering approach for the countermeasures, or water reuse and recycle are particularly encouraged.
Articles 130 Documents
Development of IoT-Based Real-Time Monitoring System and LFA to Improve the Efficiency and Performance of Wastewater Treatment Plant in Udayana University Hospital Pujianiki Ni Nyoman; I Nyoman Sudi Parwata; I Made Oka Guna Antara; Kurihara Kazumi; Akhmad Rivai
Journal of the Civil Engineering Forum Vol. 9 No. 2 (May 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.5122

Abstract

Indonesia is one of the countries infected by the Coronavirus Disease 2019 (COVID-19) pandemic, which is caused by acute respiratory syndrome virus 2 (SARS-CoV-2). At the end of March 2020, the provincial government of Bali appointed Udayana University Hospital to handle COVID-19 patients because the province has experienced an increase in the number of positive cases. In September 2020, COVID-19 cases in Bali increased by more than 100%, resulting in a higher volume and content of hazardous liquid waste. Furthermore, hazardous liquid waste is the residue of activities that contain substances that can pollute and damage the environment and health, necessitating more efforts in managing the processing of hazardous wastewater produced by the hospital. Based on the background above, this study developed and applied an Internet of Things (IoT) based monitoring system to the Wastewater Treatment Plant (WWTP) in Udayana University Hospital. In principle, the IoT system can be used as a real-time monitoring tool and minimizes direct contact activities of officers’ WWTP sites. Moreover, the Liquid Film Aerator (LFA) was applied to improve the efficiency of WWTP. The developed IoT system successfully monitors pH, DO, and real-time temperature, and the monitoring results were presented in a web-based user interface. The result shows better power usage efficiency than conventional aeration. Furthermore, conventional aeration with a root blower requires 619.8 watts to produce 1 mg/L of DO, while LFA only requires 273.2 watts. The developed systems can be applied to other hospitals or similar wastewater plants that handle COVID-19 cases.
The Study of Seismic Hazard in Near-Fault Areas Using Probabilistic and Deterministic Approach Grisella Aglia; Martin Wijaya; Paulus Pramono Rahardjo
Journal of the Civil Engineering Forum Vol. 9 No. 2 (May 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.5469

Abstract

Earthquake is one of the most common natural disasters in Indonesia and usually destroys both high and low-rise buildings as well as triggers liquefaction and Tsunami. This means it is important to provide a robust building design with the ability to resist earthquake load and other induced phenomena. One of the methods commonly used to determine the relevant response spectrum of the bedrock is seismic hazard analysis which can be either Probabilistic Seismic Hazard Analysis (PSHA) or Deterministic Seismic Hazard Analysis (DSHA). The application of PSHA allows the representation of the response spectrum of an earthquake using the return period, thereby providing the engineers with the flexibility of selecting the appropriate natural period. Meanwhile, DSHA is based on geological observations and empirical data that can be easily understood. This research discussed the greater influence of seismic hazard analysis on the bedrock response spectrum of near-fault areas including Bandung situated at a distance of 12.9 km from Lembang Fault, Palu at 3 km from Palu Fault, and Yogyakarta at 8.5 km from Opak Fault. Moreover, EZFRISK Program was used to generate a response spectrum at bedrock and the results showed that PSHA is consistently more conservative than DSHA. It was also noted that there are significant differences at shorter periods for Palu site but these differences were observed at the natural period between 1s and 2s for Bandung and Yogyakarta sites.
Dam Break Analysis of Sermo Dam Sumira, Maria; Anggraheni, Evi; Prastica, Rian Mantasa Salve
Journal of the Civil Engineering Forum Vol. 9 No. 2 (May 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.5619

Abstract

Sermo Dam is located in the Special Region of Yogyakarta and serves multiple purposes including providing drinking water, supplementing irrigation systems in the Kalibawang area, and flood control. According to data published by the World Commission, 60% of mitigation measures taken to overcome the impact of dam structure failures are unsuccessful. The simulation of dam failure serves as a crucial aspect of flood mitigation plans and strategies because it is more destructive than natural flood waves. This research used HEC-RAS 5.0.7 to examine the flood inundation mapping and simulate dam failure in two dimensions. However, Dam Break Analysis was adopted to provide a Dam Emergency Action Plan Guide to guide managers and the community. The overtopping scenario was adapted to model the failure of the Sermo Dam based on the frequent occurrence of heavy and extreme precipitation in the affected area. Data were analyzed using unsteady flow and PMF discharge with peak inflow discharge of 1276.6 m³/s, which result in an inundation area of 9394 hectares and a maximum flood height of 17 m. Dam failure-induced floods tend to potentially affect eight sub-districts including Kokap, Pengasih, Sentolo, Wates, Panjatan, Galur, Lendah, and Temon. The piping scenario is also considered based on the potential damage that tends to occur. In the piping scenario, the biggest flooding area was 5112 hectares with a maximum flood height of 13 m. About six sub-districts are potentially affected by dam failure-induced floods with Kokap and Sentolo being excluded from the list. Therefore, it is crucial to establish early warning systems and infrastructure to mitigate disaster risks. The results of this research can also inform evacuation planning, damage estimation, and post-flood rehabilitation efforts in the affected areas.
The Influence of Temperature Variations on Rigid Pavement Concrete Slabs Anno Mahfuda; Suprapto Siswosukarto; Bambang Suhendro
Journal of the Civil Engineering Forum Vol. 9 No. 2 (May 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.5744

Abstract

This research aims to assess the effect of temperature gradient developed within the concrete slab of rigid pavement, and to investigate its impact when incorporated with the traffic load, and the heat transfer pattern. The rigid pavement model considers an isotropic, uniform, and linear-elastic schemes to simulate the material properties. A numerical analysis approach was employed using Abaqus software incorporated with the 3D Solid model. The traffic loads were obtained from the field surveys, while the temperature of the slabs was measured directly on the site. The dimension of the rigid panel is 2.75 m in width, 5 m long, slab thickness of 25 cm, and concrete specification of 41.33 MPa. The results showed that the temperature gradient produced a significant impact on stress development within the concrete slab of rigid pavement. It was observed that the temperature gradient during the daytime generated higher stress than at night, with a value reaching the MOR (Modulus of Rupture). The exposure of the rigid pavement to 500C tends to produce a principle slab stress of 2.395 MPa, while 1.31 MPa was developed due to the traffic load. When the two factors were combined, the concrete slab acquired a maximum principle stress of 3.322 MPa, which is close to the MOR of 83.34% fa. These results showed that the pavement is capable of withstanding stress from temperature gradient and traffic load as indicated by the ratio of less than one (1). However, this ratio is high for fatigue failure mitigation purposes, and this reduces the quality of life of the rigid pavement.
Design of Stone Column to Mitigate Soil Liquefaction: Cases Study of Yogyakarta International Airport Nicholas Hartono; Teuku Faisal Fathani
Journal of the Civil Engineering Forum Vol. 9 No. 2 (May 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.5933

Abstract

A low-to-medium cohesionless soil with low fines content was predominantly observed at the surfaces of Yogyakarta International Airport (YIA). The condition exposed subsoil of YIA to Liquefaction in addition to its location on a high seismic zone which has increased the likelihood of massive ground shaking. This means it is necessary to improve soil condition and vibro-replacement using stone column was selected as the appropriate method due to its recent popularity for the enhancement of sandy ground. Stone column has the ability to reduce the Cyclic Stress Ratio (CSR) of liquefiable soil and can be reliably evaluated. Therefore, this study was conducted to evaluate the risk of Liquefaction at YIA by adopting the SPT-based Liquefaction triggering procedure and presuming its manifestation using Liquefaction Severity Index (LSI). It is pertinent to state that the theoretical approach introduced by Priebe was used to design the geometry and center-to-center distance of stone column. The results were presented in the form of maps with a 50 m × 50 m grid size which include the cut and fill, LSI before and after improvement, stone column spacing, as well as stone column depth. It was discovered that the triangular spacing required for stone column ranged from 1.25 m to 2.5 m while the maximum depth was found to be 6 m. Moreover, stone column inclusion efficiently reduced the severity of Liquefaction from medium to very low for the areas studied. However, stone column has several limitations and this means a combination of soil improvement methods needs to be applied to areas with moderate LSI.
Establishing a Simple-yet-effective Approach of Early Warning System for Storm-Induced Earth-Filled Dam-Break Cases in Data-sparse Region Doddi Yudianto; Farrell Wiguna; Bobby Minola Ginting; Albert Wicaksono; Xie Yuebo
Journal of the Civil Engineering Forum Vol. 9 No. 2 (May 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.6126

Abstract

Historically, the occurrence of dam-break cases has been proven to cause significant loss of life and economical damage. Apart from the catastrophic nature of dam-breaks, the absence of a robust disaster prevention system exacerbates the disasters that occur. This study proposes an Early Warning System (EWS) to mitigate the impact of dam-break disasters. However, predicting the occurrence of such disasters is challenging, specifically in areas like Indonesia, where comprehensive data recording is lacking. While it may be difficult to predict the occurrence of a sunny day break, the storm-induced break is more predictable. Therefore, this study proposes a simple yet effective macro-based EWS for Earth-Filled Dam-Break Cases using a macro approach based on the Evacuation Clearance Time (ECT). By comparing the ECT value with the arrival time of the floods from the affected areas, additional evacuation time can be obtained, which will be used to determine the EWS. The proposed EWS for Cengklik Dam is given in three levels of warning indicated by the reservoir water level at +141.36 m, +141.40 m, and +141.45 m. With the proposed EWS, the results show that 100% of people are expected to reach the evacuation point safely. The case study shows that the proposed EWS can significantly reduce the risk impact of the dam-break events.
Investigating the Capability of HEC-RAS Model for Tsunami Simulation Rifa Amaliah; Bobby Minola Ginting
Journal of the Civil Engineering Forum Vol. 9 No. 2 (May 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.6140

Abstract

This study highlights the simulation of tsunami cases using HEC-RAS 6.1. The primary aim is to evaluate the capability of the software in performing tsunami simulation due to its standalone computational framework (pre-processing, execution, and post-processing stages), making the modeling process interactive. The model accuracy was tested against some benchmark cases of wave propagation, including analytical solutions, laboratory experiments, and field measurements. The results showed HEC-RAS was capable of modeling tsunami propagation. The maximum elevation and velocity magnitude were accurately computed for the analytical cases. Furthermore, sufficiently accurate results were obtained for the laboratory case, where the maximum elevation was properly computed. For the field cases, the wave arrival time and the fluctuations of water surface and velocity were appropriately calculated. The Root Mean Square Error values between the numerical results and the analytical/observed data were relatively low below 30%, with the Pearson Product Moment Correlation values ranging from 52–99%. In addition to its eminence, a drawback was found regarding the graphical user interface (GUI) of HEC-RAS for the input of boundary conditions. These findings will be beneficial for the coastal engineering community and the continuous development of HEC-RAS.
Wastewater Characterization and pH Neutralizing Effect of Adsorbents: A Case Study of Concrete Wash Wastewater from a Ready-Mix Plant Adhin Harum Wulaningtyas; Ni Nyoman Nepi Marleni
Journal of the Civil Engineering Forum Vol. 9 No. 2 (May 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.6622

Abstract

This study aims to characterize washed concrete wastewater and examine the effectiveness of three different adsorbents in reducing its high alkalinity and metal contents. It is important to note that proper treatment is essential before discharging wastewater into water bodies to prevent any negative impact on the environment. Therefore, in this study, an adsorption scenario was conducted to obtain optimum treatment for washed concrete wastewater. The objectives of this study are as follows (1) to determine the typical characteristics of washed concrete wastewater based on the parameters outlined in the Regulation of the Ministry of Environment of Indonesia No 5 of 2014 and (2) to assess the performance of different adsorbents. Three wastewater samples were obtained from a ready-mix plant and then tested in the laboratory. The initial test was conducted to identify influent characteristics, and from this test, it was found that only the pH level exceeded the specified standard. Following this, the study then assessed the ability of three adsorbents to reduce the pH level in washed concrete wastewater using the batch test in Duplo. The pH level was measured at 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, and 24 hours. The three adsorbents tested were activated carbon, clay brick, and dried domestic sewage sludge. The result shows that dried domestic sewage sludge was the most effective at reducing alkaline wastewater due to its acidic pH. Therefore, it has the potential to replace other commercial adsorbents and reduce the problem of sludge disposal. Further research on this material is recommended, such as evaluating its performance in a more solid form, such as brick, and assessing its contamination potential.
Methods to Determine Ductility of Structural Members: A Review Jen Hua Ling; Yong Tat Lim; Euniza Jusli
Journal of the Civil Engineering Forum Vol. 9 No. 2 (May 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.6631

Abstract

Ductility plays a crucial role in ensuring the safety of a structure, as its inadequacy can lead to sudden and brittle failure. Despite its significance, there is no explicit method for determining, leading to inconsistency and confusion in selecting appropriate techniques. Misjudging a structure’s ductile behaviour can have catastrophic consequences. Therefore, this study examined several preliminary studies and identified twenty-one methods for computing ductility indices. These indices were categorized into three types, namely conventional, displacement-based, and energy-based. The conventional ductility indices are commonly applied to steel-reinforced members, deformation-based ductility indices to FRP-reinforced members, and energy-based ductility indices to earthquake-resistant and static-load structures. Conventional ductility indices are specific to ductile reinforcements, while displacement-based and energy-based ductility indices apply to both ductile and non-ductile reinforcements. However, different calculation methods can lead to significant variations in the computed ductility, particularly for those involving the first crack, and load factor, thereby leading to different ductility requirements for ensuring structural safety. Additionally, not all methods are explicit, and it is crucial to avoid indiscriminately applying requirements from one method to another.
Optimizing the Use of Meninting Multipurpose Reservoir Water in West Lombok District Fransisca Natania Karina Rediasti; Rachmad Jayadi; Bambang Triatmodjo
Journal of the Civil Engineering Forum Vol. 9 No. 2 (May 2023)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jcef.7161

Abstract

The construction of the Meninting Reservoir was planned with the objective of meeting the irrigation and domestic water demands on Lombok Island. It served as a multipurpose reservoir, with a maximum storage volume of 12.18 million m³, mainly for supplying irrigation and domestic water. The reservoir had considerable potential for water availability, which could be used to supply water to the South Lombok region with limited water availability but had agricultural land potential. Therefore, this study aimed to evaluate the potential of Meninting Reservoir water availability and its optimum utilization for irrigation and domestic purposes. The irrigation water demand for 1,559.29 ha and domestic water demand of 150 ls-1 was fulfilled by Meninting Reservoir. Water availability in this Reservoir was estimated with the F.J. Mock method of rainfall-runoff model using 25 years of daily rainfall data from Gunung Sari and Sesaot rain gauge stations. The calibration process of the rainfall-runoff parameters models employed observed discharge data from the Aiknyet water level gauge station. The formula for optimizing reservoir water release was prepared using the linear programming method based on operational water level limits, inflow discharge, irrigation, and non-irrigation water requirements, including domestic water. The optimal average annual cropping intensity was 203.96%, 215.87%, and 241.41% for dry, normal, and wet years, respectively. The service reliability of irrigation and domestic water demands reached 100% for all inflow discharge conditions. The k-factor value met the minimum limit of 0.70 and 0.85 for irrigation and domestic water demands, respectively.

Page 5 of 13 | Total Record : 130