cover
Contact Name
Siti Nurmaini
Contact Email
comengappjournal@unsri.ac.id
Phone
+6285268048092
Journal Mail Official
comengappjournal@unsri.ac.id
Editorial Address
Jurusan Sistem Komputer, Fakultas Ilmu Komputer, Universtas Sriwijaya, KampusUnsri Bukit Besar, Palembang
Location
Kab. ogan ilir,
Sumatera selatan
INDONESIA
ComEngApp : Computer Engineering and Applications Journal
Published by Universitas Sriwijaya
ISSN : 22524274     EISSN : 22525459     DOI : 10.18495
ComEngApp-Journal (Collaboration between University of Sriwijaya, Kirklareli University and IAES) is an international forum for scientists and engineers involved in all aspects of computer engineering and technology to publish high quality and refereed papers. This Journal is an open access journal that provides online publication (three times a year) of articles in all areas of the subject in computer engineering and application. ComEngApp-Journal wishes to provide good chances for academic and industry professionals to discuss recent progress in various areas of computer science and computer engineering.
Articles 5 Documents
Search results for , issue "Vol 12 No 1 (2023)" : 5 Documents clear
Development Of A Cloud-Based Condition Monitoring Scheme For Distribution Transformer Protection Ayodele Isqeel Abdullateef; Abdulkabir Olatunji Issa; Abdullah Sulaiman; Momoh-Jimoh Eyiomoka Salami; Abdulrahaman Okino Otuoze
Computer Engineering and Applications Journal Vol 12 No 1 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i1.417

Abstract

Distribution transformers are a necessity to ensure a reliable power supply to consumers and their inability to function properly or even breakdown should be avoided due to the high cost of replacing them. Distribution transformers are large in numbers and randomly distributed in cities and there is a need to accurately monitor their daily/hourly performance. To achieve this, real-time monitoring of the transformer’s health status is proposed rather than the use of the traditional approach involving physical inspection and testing which is slow, tedious and time-consuming. This paper presents a cloud-based monitoring scheme applied to a prototype distribution transformer. A 10kVA, 0.415 kV prototype distribution transformer has been acquired and connected to three residences for data acquisition. A data acquisition system has been developed to monitor and record the parameters of the prototype transformer for 14 days. The parameters, monitored in real-time include load current, phase voltage, transformer oil level, ambient temperature and oil temperature. The acquired real-time data of the transformer is validated with the standard measuring instrument. An algorithm was developed to transmit and log the data to ThinkSpeak cloud server via node MCU (ESP 8266). Results obtained in this study, which can be visualized via the graphical user interface of ThinkSpeak, indicate that the proposed scheme can acquire vital data from the distribution transformers and transmit the information to the monitoring centre.
Dermatitis Atopic and Psoriasis Skin Disease Classification by using Convolutional Neural Network Dwi Mei Rita Sari; Siti Nurmaini; Dian Palupi Rini; Ade Iriani Sapitri
Computer Engineering and Applications Journal Vol 12 No 1 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i1.419

Abstract

Skin is the one of the body parts that play a large role in human physical body. There are so many functions of the skin such as offering protection against fungal infection, bacteria, allergy, viruses and controls the temperature of the body. But, the reported shown that the skin disease is the most common disease in humans among all age groups and a significant root of infection. The diagnosis of skin diseases involves several tests. Due to this, the diagnosis process is seen to be intensely laborious, time-consuming and requires an extensive understanding aspecially for the skin disease that have similar symptoms. Two skin diseases that have similar symptoms and most misdiagnosed are atopic dermatitis and psoriasis. Convolutional Neural Network for image processing and classifying have been developed for more accurate classification of skin diseases with different architectures. However, the accuracy in determining skin lesions using CNNs is on the average level. The factors that affect the accuracy result of a CNN is the depth where gradients vanished as the network goes deeper. Another factor is the variance in the training set which means the need of the large size of training set. Hence, in this study we tried 10 CNN architecture to get the best result for classifying dermatitis atopic and psoriasis. These are VGG 16, VGG 19, ResNet 50, ResNet 101, MobileNet, MobileNet V2, DenseNet 121, DenseNet 201, Inception and Xception. Experimental result shown that the inception V3 architecture give the best result with accuracy for data testing 84%, accuracy for unseen data 82% and confusion matrix with True positive obtained is 248, True Negative is 61, False positive is 54 and False Negative 298.
Classification of Covid-19 Diseases Through Lung CT-Scan Image Using the ResNet-50 Architecture Lucky Indra Kesuma; Rudiansyah Rudiansyah
Computer Engineering and Applications Journal Vol 12 No 1 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i1.425

Abstract

Covid-19 is a respiratory tract disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The Covid-19 disease was first reported in Wuhan, China, in December 2019. The SARS-CoV-2 virus is primarily transmitted through human contact, and the World Health Organization has proclaimed a global pandemic (WHO). Symptoms of Covid-19 can range from asymptomatic to mild and severe. One way to diagnose Covid-19 disease can be done by examining lung abnormalities on the results of a Computed Tomography Scan (CT-Scan) of the lungs. However, determining the diagnostic results requires high accuracy and a long time. For this reason, an automated system is needed to make it easier for medical personnel to diagnose Covid-19 disease quickly and accurately. One of the automated systems with computer assistance in detecting abnormalities in CT-Scan images of the lungs is to perform pattern recognition
Optimization of Deep Neural Networks with Particle Swarm Optimization Algorithm for Liver Disease Classification Muhammad Nejatullah Sidqi; Dian Palupi Rini; Samsuryadi Samsuryadi
Computer Engineering and Applications Journal Vol 12 No 1 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i1.432

Abstract

Liver disease has affected more than one million new patients in the world. which is where the liver organ has an important role function for the body's metabolism in channeling several vital functions. Liver disease has symptoms including jaundice, abdominal pain, fatigue, nausea, vomiting, back pain, abdominal swelling, weight loss, enlarged spleen and gallbladder and has abnormalities that are very difficult to detect because the liver works as usual even though some liver functions have been damaged. Diagnosis of liver disease through Deep Neural Network classification, optimizing the weight value of neural networks with the Particle Swarm Optimization algorithm. The results of optimizing the PSO weight value get the best accuracy of 92.97% of the Hepatitis dataset, 79.21%, Hepatitis 91.89%, and Hepatocellular 92.97% which is greater than just using a Deep Neural Network.
Segmentation of Skin Lesions Using Convolutional Neural Networks Firdaus Firdaus; Muhammad Fachrurrozi; Muhammad Naufal Rachmatullah; Dewi Chayanti; Annisa Darmawahyuni; Anggun Islami; Ade Iriani Sapitri; Bambang Tutuko
Computer Engineering and Applications Journal Vol 12 No 1 (2023)
Publisher : Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18495/comengapp.v12i1.466

Abstract

Skin lesions play a crucial role as the initial clinical symptoms of diseases such as chickenpox and melanoma. By employing digital image processing techniques for skin cancer detection, it becomes feasible to diagnose these conditions without the need for physical contact with the skin. However, the automatic analysis of dermoscopy images, which exhibit characteristics like residue (hair and ruler markers), indistinct borders, varying contrast, and variations in shape and color, poses significant challenges. To overcome these difficulties, effective hair removal through segmentation has been explored extensively in the literature. In this study, we present a skin lesion segmentation system developed using the Convolutional Neural Networks (CNNs) method with the U-Net architecture. The model was constructed and evaluated using the HAM10000 Dataset. The results achieved by the best-performing model were outstanding, with a Pixel Accuracy, Intersection over Union (IoU), and F1 Score of 95.89%, 90.37%, and 92.54%, respectively

Page 1 of 1 | Total Record : 5