cover
Contact Name
Agus Harjoko
Contact Email
ijccs.mipa@ugm.ac.id
Phone
+62274 555133
Journal Mail Official
ijccs.mipa@ugm.ac.id
Editorial Address
Gedung S1 Ruang 416 FMIPA UGM, Sekip Utara, Yogyakarta 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
IJCCS (Indonesian Journal of Computing and Cybernetics Systems)
ISSN : 19781520     EISSN : 24607258     DOI : https://doi.org/10.22146/ijccs
Indonesian Journal of Computing and Cybernetics Systems (IJCCS), a two times annually provides a forum for the full range of scholarly study . IJCCS focuses on advanced computational intelligence, including the synergetic integration of neural networks, fuzzy logic and eveolutionary computation, so that more intelligent system can be built to industrial applications. The topics include but not limited to : fuzzy logic, neural network, genetic algorithm and evolutionary computation, hybrid systems, adaptation and learning systems, distributed intelligence systems, network systems, human interface, biologically inspired evolutionary system, artificial life and industrial applications. The paper published in this journal implies that the work described has not been, and will not be published elsewhere, except in abstract, as part of a lecture, review or academic thesis.
Articles 10 Documents
Search results for , issue "Vol 8, No 2 (2014): July" : 10 Documents clear
Modifikasi Algoritma Genetika untuk Penyelesaian Permasalahan Penjadwalan Pelajaran Sekolah Rahman Erama; Retantyo Wardoyo
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 8, No 2 (2014): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.6539

Abstract

AbstrakModifikasi Algoritma Genetika pada penelitian ini dilakukan berdasarkan temuan-temuan para peneliti sebelumnya tentang kelemahan Algoritma Genetika. Temuan-temuan yang dimakasud terkait proses crossover sebagai salah satu tahapan terpenting dalam Algoritma Genetika dinilai tidak menjamin solusi yang lebih baik oleh beberapa peneliti. Berdasarkan temuan-temuan oleh beberapa peneliti sebelumnya, maka penelitian ini akan mencoba memodifikasi Algoritma Genetika dengan mengeliminasi proses crossover yang menjadi inti permasalahan dari beberapa peneliti tersebut. Eliminasi proses crossover ini diharapkan melahirkan algoritma yang lebih efektif sebagai alternative untuk penyelesaian permasalahan khususnya penjadwalan pelajaran sekolah.Tujuan dari penelitian ini adalah Memodifikasi Algoritma Genetika menjadi algoritma alternatif untuk menyelesaikan permasalahan penjadwalan sekolah, sehingga diharapkan terciptanya algoritma alternatif ini bisa menjadi tambahan referensi bagi para peneliti untuk menyelesaikan permasalahan penjadwalan lainnya.Algoritma hasil modifikasi yang mengeliminasi tahapan crossover pada algoritma genetika ini mampu memberikan performa 3,06% lebih baik dibandingkan algoritma genetika sederhana dalam menyelesaikan permasalahan penjadwalan sekolah. Kata kunci—algoritma genetika, penjadwalan sekolah, eliminasi crossover  AbstractModified Genetic Algorithm in this study was based on the findings of previous researchers about the weakness of Genetic Algorithms. crossover as one of the most important stages in the Genetic Algorithms considered not guarantee a better solution by several researchers. Based on the findings by previous researchers, this research will try to modify the genetic algorithm by eliminating crossover2 which is the core problem of several researchers. Elimination crossover is expected to create a more effective algorithm as an alternative to the settlement issue in particular scheduling school.This study is intended to modify the genetic algorithm into an algorithm that is more effective as an alternative to solve the problems of school scheduling. So expect the creation of this alternative algorithm could be an additional resource for researchers to solve other scheduling problems.Modified algorithm that eliminates the crossover phase of the genetic algorithm is able to provide 2,30% better performance than standard genetic algorithm in solving scheduling problems school. Keywords—Genetic Algorithm, timetabling school, eliminate crossover
Aplikasi Algoritma CBA untuk Klasifikasi Resiko Pemberian Kredit (Studi kasus: PT. Telkom CDC Sub Area Kupang) Robynson Amseke; Edi Winarko
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 8, No 2 (2014): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.6540

Abstract

AbstrakSalah satu penyebab kredit bermasalahberasal dari pihak internal, yaitu kurang telitinya timdalam melakukan survei dan analisis, atau bisa juga karena penilaian dan analisis yang bersifat subjektif.Penyebab ini dapat diatasi dengan sistem komputer, yaitu aplikasi komputer yang menggunakan teknik data mining.Teknik data mining digunakan dalam penelitian ini untuk klasifikasi resiko pemberian kredit dengan menerapkan algoritma Classification Based On Association (CBA). Algoritma ini merupakan salah satu algoritma klasifikasi dalam data mining yang mengintegrasikan teknik asosiasi dan klasifikasi. Data kredit awal yang telah di-preprocessing, diproses menggunakan algoritma CBA untuk membangun model, lalu model tersebut digunakan untuk mengklasifikasi data pelaku usaha baru yang mengajukan kredit ke dalam kelas lancar atau macet.Teknik Pengujian akurasi model diukur menggunakan 10-fold cross validation. Hasil pengujian menunjukkan bahwa rata-rata nilai akurasi menggunakan algoritma CBA (57,86%), sedikit lebih tinggi dibandingkan rata-rata nilai akurasi menggunakan algoritma Naive Bayes dan SVM dari perangkat lunak Rapid Miner 5.3 (56,35% dan 55,03%). Kata kunci—classification based on association, CBA, data mining, klasifikasi, resiko pemberian kredit  AbstractOne of the causes of non-performing loans come from the internal, that is caused by a lack of rigorous team in conducting the survey and analysis, or it could be due to subjective evaluation and analysis. The cause of this can be solved by a computer system, the computer application that uses data mining techniques. Data mining technique, was usedin this study toclassifycreditriskby applyingalgorithmsClassificationBasedonAssociation(CBA). This algorithm is an algorithm classification of data mining which integratingassociationandclassificationtechniques. Preprocessed initial-credit data, will be processed using theCBAalgorithmto create a model of which is toclassifythe newloandata into swift class or bad one. Testing techniques the accuracy of the model was measured by 10-fold cross validation. The resultshowsthatthe accuracy averagevalue using theCBAalgorithm(57,86%), was slightly higher than those using thealgorithmsofSVM andNaiveBayes from RapidMiner5.3software(56,35% and55,03%, respectively). Keywords—classification based on association, CBA, data mining, classification, credit risk 
Sistem Identifikasi Relief pada Situs Bersejarah Menggunakan Perangkat Mobile Android (Studi Kasus Candi Borobudur) Rajif Agung Yunmar; Agus Harjoko
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 8, No 2 (2014): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.6541

Abstract

Abstrak            Bangsa yang besar adalah bangsa yang menghargai sejarah dan asal usulnya. Relief yang terdapat pada candi Borobudur menggambarkan banyak cerita, termasuk sejarah dan asal usul bangsa ini. Mulai dari cerita kehidupan kalangan kerajaan, kehidupan masyarakat, dan adat istiadat pada saat bangunan candi tersebut dibuat, dsb.            Penelitian ini merancang sebuah perangkat lunak mobile Android untuk identifikasi citra relief Candi Borobudur sehingga dapat membantu wisatawan dalam menerjemahkan pesan dan informasi yang terkandung didalamnya. Metode ekstraksi ciri yang digunakan adalah Speeded-Up Robust Feature (SURF) dan hierarchical k-means tree nearest-neighbor untuk identifikasinya.            Pengujian identifikasi citra relief dilakukan dengan berbagai macam variasi, yaitu sudut, jarak, rotasi, intensitas cahaya dan keutuhan citra masukan untuk melihat pengaruhnya terhadap hasil pengenalan citra relief tersebut. Metode identifikasi yang diajukan memberikan hasil pengenalan sebesar 93.30% dengan rata-rata waktu komputasi 59.55 detik.  Abstract            The great nation built from people who can respects they history and origins. Reliefs at Borobudur temple contained many stories, including the history and origins of this nation. Starting from the life story of the royal, society, and customs at the time of the building of the temple was made, and so on.            This study develops mobile Android software for identification of Borobudur Temple relief image object so that it can help travelers in translating the story and the information contained therein. Feature extraction method used is speeded-Up Robust Feature (SURF) and hierarchical k-means tree nearest-neighbor for identification.            Identification testing of relief images is done by different variations, ie angle, distance, rotation, intensity of the light and wholeness of image input to see the effect on the relief image recognition results. The proposed identification method gives recognition results of 93.30% and the average computation time for 59.55 seconds.
Klasifikasi Lagu Berdasarkan Genre pada Format WAV Nurmiyati Tamatjita; Agus Harjoko
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 8, No 2 (2014): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.6542

Abstract

AbstrakDalam dunia yang berkembang pesat, media audio semakin komplek. Karena itulah diperlukan sebuah mekanisme penentuan jenis lagu (genre) yang tepat secara efektif dan efisien.  Pencarian secara manual sudah tidak efektif dan efisien lagi karena banyaknya data yang tersimpan.          Zero Crossing Rate (ZCR), Average Energy (E) dan Silent Ratio (SR) adalah 3 Feature Extraction yang digunakan untuk klasifikasi pencarian 12 genre.Tiga dimensi adalah bentuk visualisasi pengukuran tingkat kemiripan sebuah data berdasarkan hasil klasifikasi yang diinput oleh user.            Dalam penelitian ini pengujian klasifikasi menggunakan metode 3, 6, 9 dan 12 genre melalui jarak terdekat (Euclidean Distance). Hasil pengujian yaitu menunjukkan bahwa 3 genre yaitu Balada, Blues dan Classic menunjukkan = 96,67%, 6 genre yaitu Balada, Blues, Classic, Harmony, Hip Jop dan Jazz menunjukkan = 70% dan 9 genre yaitu Balada, Blues, Classic, Harmony, Hip Hop, Jazz, Keroncong, Latin dan Pop menunjukkan = 53,33% serta 12 genre = 33,33% Kata Kunci— Zero Crossing Rate (ZCR), Average Energy (E), Silent Ratio (SR), Euclidean Distance  Abstract            Music genre is getting complex from time to time. As the size of digital media grows along with amount of data, manual search of digital audio files according to its genre is considered impractical and inefficient; therefore a classification mechanism is needed to improve searching.            Zero Crossing Rate (ZCR), Average Energy (E) and Silent Ratio (SR) are a few of features that can be extracted from digital audio files to classify its genre. This research conducted to classify digital audio (songs) into 12 genres: Ballad, Blues, Classic, Harmony, Hip Hop, Jazz, Keroncong, Latin, Pop, Electronic, Reggae and Rock using above mentioned features, extracted from WAV audio files. Classification is performed several times using selected 3, 6, 9 and 12 genres respectively.            The result shows that classification of 3 music genres (Ballad, Blues, Classic) has the highest accuracy (96.67%), followed by 6 genres (Ballad, Blues, Classic, Harmony, Hip Hop, Jazz) with 70%, and 9 genres (Ballad, Blues, Classic, Harmony, Hip Hop, Jazz, Keroncong, Latin, Pop) with 53.33% accuracy. Classification of all 12 music genres yields the lowest accuracy of 33.33%.   Keywords— Zero Crossing Rate (ZCR), Average Energy (E), Silent Ratio (SR), Euclidean Distance
Perbandingan Ekstraksi Ciri Full, Blocks, dan Row Mean Spectrogram Image Dalam Mengidentifikasi Pembicara La Ode Hasnuddin Sagala; Agus Harjoko
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 8, No 2 (2014): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.6543

Abstract

AbstrakPada sebuah sistem recognition, pemilihan metode ekstraksi ciri dan ukuran fitur yang digunakan mempengaruhi tingkat keakuratan identifikasi. Berkaitan dengan hal itu, dalam penelitian ini akan dijabarkan perbandingan tiga metode ekstraksi ciri CBIR yaitu row mean image, full image, dan blocks image. Ketiga metode tersebut digunakan untuk mengidentifikasi pembicara dengan menitikberatkan pada ukuran selection feature vector yang digunakan.Data suara diperoleh dari rekaman suara menggunakan handphone. Rekaman suara berasal dari 10 orang narasumber dengan rincian 5 pria dan 5 wanita. Setiap narasumber mengucapkan lima buah kalimat yaitu Selamat Pagi, Selamat Siang, Selamat Sore, Selamat Malam, dan Dengan Siapa serta diulangi delapan kali tiap kalimat.Karena menerapkan metode CBIR maka rekaman suara yang berbentuk sinyal dikonversi menjadi image spectrogram menggunakan STFT. Kemudian spectrogram diimplementasikan ke kekre transform lalu diekstrasi cirinya. Penggunaan kekre transform bertujuan untuk menyeleksi dan mengambil kemungkinan-kemungkinan fitur yang optimal serta juga meringankan proses komputasi.Menggunakan data reference 250 image spectrogram dan data testing 150 image spectrogram memberikan hasil bahwa metode ekstraksi ciri full image memperoleh persentase identifikasi lebih tinggi yaitu 93,3% dengan ukuran fitur 32x32. Kata kunci— Identifikasi pembicara, Spektrogram, Transformasi kekre, Full image, Blocks Image, Row mean image AbstractOn a system of recognition, selection feature extraction method and feature size are used in identification affects identication rate. In that regard, this study will presents comparison three feature extraction methods namely row mean image, full image, and blocks image. The third method used to identify the speaker with a focus on the size selection feature vector are used. Sound data obtained from the mobile phone voice recording. Sound recording derived from 10 speakers consisting of 5 men and 5 women. Every speakers pronounce five sentences are Selamat Pagi, Selamat Siang, Selamat Sore, Selamat Malam, and Dengan siapa as well as repeated eight times.Because applying CBIR methods then the sound recording signal is converted into an image spectrogram using STFT. Spectrogram is formed implemented in kekre transform to extract feature. Using kekre transform aims to select and take the possibilities optimal feature also relieves the computing process.Using reference data 250 spectrogram and testing data 150 spectrogram produces results that the full image feature extraction methods obtain a higher percentage identification rate is 93,3% with a feature size of 32x32. Keywords— Speaker identification, Spectrogram, Kekre Transform, Full Image, Blocks Image, Row Mean Image
Perancangan dan Analisis Kinerja Private Cloud Computing dengan Layanan Infrastructure-As-A-Service (IAAS) Wikranta Arsa; Khabib Mustofa
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 8, No 2 (2014): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.6544

Abstract

AbstrakMesin server merupakan salah satu penunjang dan komponen utama yang harus ada dalam mengembangkan suatu karya ilmiah dengan berbasis web. Mahalnya server menjadi kendala mahasiswa/mahasiswi dalam menghasilkan suatu karya ilmiah. Konfigurasi server yang dapat dilakukan dimana saja dan kapan saja menjadi sebuah keinginan mendasar, selain pemesanan mesin yang mudah, cepat dan fleksibel. Untuk itu  diperlukan sebuah sistem yang dapat menangani permasalahan tersebut. Cloud computing  dengan layanan Infrastructure-As-A-Serveice (IAAS) dapat menyediakan sebuah infrastruktur yang handal. Untuk mengetahui kinerja sistem diperlukan suatu analisis performance antara server cloud (instance) dengan server konvensional. Hasil penelitian dari analisis kinerja private cloud computing dengan layanan Infrastructure-As-A-Service (IAAS) ini menunjukkan bahwa perbandingan kinerja satu server cloud atau server virtual cloud dengan satu server konvensional tidak jauh berbeda namun akan terlihat perbedaan kinerja yang signifikan jika dalam satu server node terdapat lebih sari satu server virtual dan sistem ini memberikan tingkat penggunaan resource server yang lebih maksimal.Kata kunci—Cloud Computing, Infrastructure As-A-Service (IAAS), analisis Performance. Abstract Server machine is one of the main components in supporting and developing a web-based scientific work. The high price of the server to be the main obstacle in the student produced a scholarly work. Server configuration that can be done anywhere and anytime to be a fundamental desire, in addition to the booking engine is easy, fast, and flexible is also highly desirable. For that we need a system that can handle these problems. Cloud computing with Infrastructure-As-A-Serveice (IAAS) can provide a reliable infrastructure. To determine the performance of the system, we required a performance analysis of cloud server between conventional servers. Results of performance analysis of private cloud computing with Infrastructure-As-A-Service (IAAS) indicate that the cloud server performance comparison with conventional server is not too much different and the system resource usage level servers provide more leverage. Keyword—Cloud Computing, Infrastructure As-A-Service (IAAS), Performance Analysis. 
Analisis Tekstur untuk Klasifikasi Motif Kain (Studi Kasus Kain Tenun Nusa Tenggara Timur) Nicodemus Mardanus Setiohardjo; Agus Harjoko
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 8, No 2 (2014): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.6545

Abstract

AbstrakIndonesia memiliki banyak kekayaan budaya dalam bentuk kain tradisional, salah satunya kain tenun dari Nusa Tenggara Timur (NTT). Kain tenun dari tiap etnik di NTT memiliki cirikhas motif masing-masing yang merupakan manifestasi kehidupan sehari-hari, kebudayaan dan kepercayaan masyarakat setempat. Di mata pemerhati kain tenun NTT, asal kain tenun dapat diketahui dari motifnya. Tidak semua orang dapat membedakan asal daerah dari motif kain tenun tertentu dikarenakan sulitnya mendefinisikan karakteristik motif kain tenun suatu daerah dan beragamnya motif kain tenun yang ada dan komposisi warna yang beragam pula.Analisis tekstur adalah teknik analisis citra berdasarkan anggapan bahwa citra dibentuk oleh variasi intensitas piksel, baik citra keabuan maupun warna. Motif kain tenun terbentuk dari variasi intensitas warna sehingga dapat dipandang sebagai tekstur berwarna dari kain tenun. Penelitian ini bertujuan untuk mengetahui diantara pendekatan analisis tekstur menggunakan Gray Level Co-occurrence Matrix (GLCM) yang dikombinasikan dengan momen warna dan pendekatan analisis tekstur menggunakan Color Co-occurrence Matrix (CCM), metode manakah yang memberikan hasil lebih baik untuk klasifikasi motif kain tenun NTT.Hasil penelitian menunjukkan bahwa untuk klasifikasi motif kain tenun NTT, pendekatan analisis tekstur menggunakan metode CCM memberikan hasil lebih baik dibandingkan pendekatan analisis tekstur menggunakan GLCM yang dikombinasikan dengan momen warna. Kata kunci—klasifikasi citra, GLCM, CCM, momen warna, motif kain tenun NTT AbstractIndonesia have many culture in the form of traditional fabrics, one of them is woven fabric from Nusa Tenggara Timur (NTT). Each NTT ethnic has motif characteristic which ismanifestation of daily life, culture and the faith of local people. For a NTT woven fabric observer, the origin of a woven fabric can be known from the motif. But its difficult to recognising the origin of a woven fabrics because it is hard to define the characteristics of woven fabric motif from a region and wide variety of existing woven fabric motifs and also color composition.Texture analysis is image analysis technique based on assumption that an image formed by the variation of pixels intensity, both gray and color image. Woven fabric motif formed by the variation of color intensity that can be seen as color texture of the woven fabric. This study aims to determine between texture analysis using GLCM combined with color moment and texture analysis using CCM, which method gives better results for the NTT woven fabric motif classification.The results showed that for the NTT woven fabric motif classification, texture analysis using CCM gives better results than the texture analysis using GLCM combined with color moment. Keywords— image classification, GLCM, CCM, color moment, NTT woven fabric motif
Optimasi Biaya Distribusi Rantai Pasok Tiga Tingkat dengan Menggunakan Algoritma Genetika Adaptif dan Terdistribusi Zulfahmi Indra; Subanar Subanar
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 8, No 2 (2014): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.6546

Abstract

AbstrakManajemen rantai pasok merupakan hal yang penting. Inti utama dari manajemen rantai pasok adalah proses distribusi. Salah satu permasalahan distribusi adalah strategi keputusan dalam menentukan pengalokasian banyaknya produk yang harus dipindahkan mulai dari tingkat manufaktur hingga ke tingkat pelanggan. Penelitian ini melakukan optimasi rantai pasok tiga tingkat mulai dari manufaktur-distributor-gosir-retail. Adapun pendekatan yang dilakukan adalah algoritma genetika adaptif dan terdistribusi. Solusi berupa alokasi banyaknya produk yang dikirim pada setiap tingkat akan dimodelkan sebagai sebuah kromosom. Parameter genetika seperti jumlah kromosom dalam populasi, probabilitas crossover dan probabilitas mutasi akan secara adaptif berubah sesuai dengan kondisi populasi pada generasi tersebut. Dalam penelitian ini digunakan 3 sub populasi yang bisa melakukan pertukaran individu setiap saat sesuai dengan probabilitas migrasi. Adapun hasil penelitian yang dilakukan 30 kali untuk setiap perpaduan nilai parameter genetika menunjukkan bahwa nilai biaya terendah yang didapatkan adalah 80,910, yang terjadi pada probabilitas crossover 0.4, probabilitas mutasi 0.1, probabilitas migrasi 0.1 dan migration rate 0.1. Hasil yang diperoleh lebih baik daripada metode stepping stone yang mendapatkan biaya sebesar 89,825. Kata kunci— manajemen rantai pasok, rantai pasok tiga tingkat, algortima genetika adaptif, algoritma genetika terdistribusi. Abstract Supply chain management is critical in business area. The main core of supply chain management is the process of distribution. One issue is the distribution of decision strategies in determining the allocation of the number of products that must be moved from the level of the manufacture to the customer level. This study take optimization of three levels distribution from manufacture-distributor-wholeshale-retailer. The approach taken is adaptive and distributed genetic algorithm. Solution in the form of allocation of the number of products delivered at each level will be modeled as a chromosome. Genetic parameters such as the number of chromosomes in the population, crossover probability and adaptive mutation probability will change adaptively according to conditions on the population of that generation. This study used 3 sub-populations that exchange individuals at any time in accordance with the probability of migration. The results of research conducted 30 times for each value of the parameter genetic fusion showed that the lowest cost value obtained is 80,910, which occurs at the crossover probability 0.4, mutation probability 0.1, the probability of migration 0.1 and migration rate 0.1. This result has shown that adaptive and distributed genetic algorithm is better than stepping stone method that obtained 89,825. Keywords— management supply chain, three level supply chain, adaptive genetic algorithm, distributed genetic algorithm.
Algoritma CPAR untuk Analisa Data Kecelakaan (Studi pada Kepolisian Daerah Sulawesi Tenggara) Natalis Ransi; Edi Winarko
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 8, No 2 (2014): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.6547

Abstract

AbstrakKecelakaan lalu lintas (laka lantas) di Sulawesi Tenggara perlu mendapatkan penanganan yang efektif karena menyebabkan korban meninggal dunia yang terus meningkat setiap tahunnya. Salah satu langkah penanganan adalah analisis karakteristik laka lantas yang berhubungan dengan korban meninggal dunia. Analisis karakteristik laka lantas dapat dilakukan dengan pendekatan faktor penyebab kecelakaan, jenis kecelakaan, dan waktu kejadian.Penelitian ini mengaplikasikan algoritma Classification based on Predictive Association Rules (CPAR) pada data mining untuk analisa karakteristik laka lantas. Algoritma CPAR menghasilkan Class Association Rules (CARs), selanjutnya CARs digunakan untuk mendeskripsikan karakteristik laka lantas yang berhubungan dengan korban meninggal dunia.Hasil penelitian diperoleh bahwa faktor yang menyebabkan korban meninggal dunia pada kasus laka lantas adalah faktor manusia (berkendara dibawah pengaruh alkohol dan berkendara melebihi batas kecepatan) dan faktor lingkungan fisik (prasarana jalan yang rusak dan jalan dengan tikungan tajam). Jenis kecelakaan (tunggal dan depan-depan), waktu kejadian (tanggal 8-14, hari Senin dan Selasa, jam 13:00-18:59), jenis kendaraan (sepeda motor) dan merek kendaraan (Honda), berpotensi menimbulkan korban meninggal pada kasus laka lantas. Pengendara sepeda motor rentan menjadi korban pada kasus laka lantas. Pengujian akurasi menggunakan 10-fold cross validation Hasil pengujian menunjukkan bahwa rata-rata akurasi algoritma CPAR lebih tinggi yaitu 48,75% dibandingkan dengan algoritma PRM yaitu 41,13%. Kata kunci— data mining, algoritma CPAR, kecelakaan lalu lintas Abstract Traffic accident in Southeast Sulawesi needs to get treatment more effective. One of the handling is analysis of traffic accident characteristic and then it was related to the death. Analysis of trafiic accident characteristics can be done with the approach factors the cause of the accident, the kind of an accident, and time genesis.This Research apply CPAR algorithm on the data mining to analyze the characteristics of traffic accident. CPAR Algorithm produce Class Association Rules (CARs) that used to describe traffic accident characteristics related to the death.Results of research, that the factors that caused the victim died in traffic accident is human factors (driving under the influence of alcohol and driving exceed the speed) and environmental factors physical (road infrastructure and damaged roads with elbow).  Types of accidents (in the singular and home-front), time genesis (on 8-14, reported Monday and Tuesday, hours 1:00 pm-6:59 pm), the type of vehicle (motorcycle), potentially causing the death toll in the case laka then. Motorcycle drivers are prone to fall victim in that case laka then. Testing accuracy using 10-fold cross validation test result show that on average these accuracy algorithm CPAR 48.75%, higher than the algorithm PRM 41.13%. Keywords— data mining, CPAR algorithm, traffic accident
Aplikasi Deteksi Dini Defisiensi Mineral Mikro pada Manusia Berbasis Web Nina Sevani; Rheinhard Unwaru
IJCCS (Indonesian Journal of Computing and Cybernetics Systems) Vol 8, No 2 (2014): July
Publisher : IndoCEISS in colaboration with Universitas Gadjah Mada, Indonesia.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijccs.6548

Abstract

AbstrakKekurangan gizi menjadi salah satu masalah yang dialami oleh masyarakat Indonesia, khususnya defisiensi mineral mikro. Pada dasarnya hal ini dikarenakan kurangnya pemahaman masyarakat akan pentingnya pola konsumsi makanan seimbang serta kemiskinan yang dialami oleh sebagian masyarakat sehingga mereka sulit memenuhi asupan gizi setiap hari dan sulit menemui seorang ahli atau dokter gizi. Hal ini dapat diatasi melalui pembuatan sebuah aplikasi berbasis web yang mampu mendeteksi defisiensi mineral mikro pada manusia secara dini, serta memberikan saran untuk mengatasi defisiensi tersebut. Aplikasi ini menggunakan sekumpulan data sebagai basis pengetahuan yang diperoleh dari studi pustaka dan diskusi dengan pakar gizi. Pengetahuan direpresentasikan dalam bentuk rule-based system dan diolah dengan metode forward chaining.Aplikasi ini dapat diakses dan digunakan oleh pengguna melalui internet. Pembuatan aplikasi ini dapat membantu masyarakat dalam menyadari pentingnya asupan mineral mikro dalam tubuh dan juga mendorong mereka untuk memiliki kebiasaan hidup yang sehat.  Kata kunci— gizi, mineral, aplikasi web, rule-based, forward chaining.  Abstract Malnutrition is the one of the Indonesian society issues, especially micro mineral deficiency. Basically, this is due to a lack of society understanding of the importance of balanced food consumtion patterns and poverty factor in Indonesia so that they are difficult to fulfill the daily nutritional intake and also difficult to meet a doctor or nutrition expert. This can be overcome through the creating of a web-based application which can detecting micro mineral deficiency in the human body at the early stage, as well as providing suggestions to overcome those deficiency. This application uses a set of data as a knowledge base which obtained from the literature and discussions with nutritional experts. The knowledge is represented with a rule-based system and processed with forward chaining method.This application can be accessed and used by users via internet. This application can helps the society to realize the importance of micro mineral intake and also encourage them to have healthy life habits. Keywords— nutrient, mineral, web application, rule-based, forward chaining.

Page 1 of 1 | Total Record : 10