cover
Contact Name
Rio Andriyat Krisdiawan
Contact Email
rioandriyat@uniku.ac.id
Phone
+6285224064393
Journal Mail Official
nuansa.informatika@uniku.ac.id
Editorial Address
Kampus 1 UNIKU. Jl. Cut Nyak Dhien No.36A, Cijoho, Kec. Kuningan, Kabupaten Kuningan, Jawa Barat 45513 Kampus 2 UNIKU. Jl. Pramuka No.67, Purwawinangun, Kec. Kuningan, Kabupaten Kuningan, Jawa Barat 45512
Location
Kab. kuningan,
Jawa barat
INDONESIA
Nuansa Informatika
Published by Universitas Kuningan
ISSN : 18583911     EISSN : 26145405     DOI : https://doi.org/10.25134/nuansa
Core Subject : Science,
NUANSA INFORMATIKA adalah jurnal peer-review tentang Informasi dan Teknologi yang mencakup semua cabang IT dan sub-disiplin termasuk Algoritma, desain sistem, jaringan, game, IoT, rekayasa Perangkat Lunak, aplikasi Seluler, dan lainnya
Articles 101 Documents
Deep Learning Evaluation for Interactive Dashboard-Base Mail Classification: Evaluasi Pembelajaran Mendalam untuk Klasifikasi Email Berbasis Dasbor Interaktif Ruth Diana Purnamasari; Nisa Hanum
NUANSA INFORMATIKA Vol. 20 No. 1 (2026): Nuansa Informatika 20.1 Januari 2026
Publisher : FKOM UNIKU

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25134/ilkom.v20i1.546

Abstract

The management of incoming mail archives at a large national logistics company in Indonesia generates a large volume of unstructured textual data, making manual classification inefficient and error-prone. This study evaluates the performance of deep learning models for administrative mail archives classification using data collected between 2023 and 2025. Three models are examined, namely Long Short-Term Memory (LSTM), Bidirectional LSTM (Bi-LSTM), and Convolutional Neural Network (CNN). Model performance is evaluated using accuracy, precision, recall, F1-score, and confusion matrix metrics. Experimental results indicate that CNN achieves the highest accuracy of 85.82%, outperforming LSTM and Bi-LSTM models. This superior performance is attributed to CNN’s ability to capture local textual patterns through convolution operations, which are well-suited to the structured and repetitive language characteristics of official correspondence. To support practical interpretation, an interactive dashboard is implemented as a visualization tool for model evaluation results, classification outcomes, and clustering analysis. These findings demonstrate that deep learning-based approaches integrated with visual analytics can significantly improve the efficiency and accuracy of unstructured mail archive management

Page 11 of 11 | Total Record : 101