cover
Contact Name
De Rosal Ignatius Moses Setiadi
Contact Email
moses@dsn.dinus.ac.id
Phone
-
Journal Mail Official
editorial.jcta@gmail.com
Editorial Address
H building, Dian Nuswantoro University Imam Bonjol street no. 207 Semarang, Central Java, Indonesia
Location
Kota semarang,
Jawa tengah
INDONESIA
Journal of Computing Theories and Applications
ISSN : -     EISSN : 30249104     DOI : 10.62411/jcta
Core Subject : Science,
Journal of Computing Theories and Applications (JCTA) is a refereed, international journal that covers all aspects of foundations, theories and the practical applications of computer science. FREE OF CHARGE for submission and publication. All accepted articles will be published online and accessed for free. The review process is carried out rapidly, about two until three weeks, to get the first decision. The journal publishes only original research papers in the areas of, but not limited to: Artificial Intelligence Big Data Bioinformatics Biometrics Cloud Computing Computer Graphics Computer Vision Cryptography Data Mining Fuzzy Systems Game Technology Image Processing Information Security Internet of Things Intelligent Systems Machine Learning Mobile Computing Multimedia Technology Natural Language Processing Network Security Pattern Recognition Signal Processing Soft Computing Speech Processing Special emphasis is given to recent trends related to cutting-edge research within the domain. If you want to become an author(s) in this journal, you can start by accessing the About page. You can first read the Policies section to find out the policies determined by the JCTA. Then, if you submit an article, you can see the guidelines in the Author Guidelines or Author Guidelines section. Each journal submission will be made online and requires prospective authors to register and have an account to be able to submit manuscripts.
Articles 92 Documents
RETRACTED: The Use of AI to Analyze Social Media Attacks for Predictive Analytics Adekunle, Temitope Samson; Alabi, Oluwaseyi Omotayo; Lawrence, Morolake Oladayo; Ebong, Godwin Nse; Ajiboye, Grace Oluwamayowa; Bamisaye, Temitope Abiodun
Journal of Computing Theories and Applications Vol. 1 No. 4 (2024): JCTA 1(4) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10120

Abstract

This article has been retracted at the request of the Editor-in-Chief. The journal was alerted to issues within this article, including significant overlap in content, methodology, and visual materials with another previously published article: "Social Engineering Attack Classifications on Social Media Using Deep Learning" (DOI: 10.32604/cmc.2023.032373) published in Computers, Materials & Continua in 2023. Upon thorough investigation, it was found that the article substantially reproduces ideas, methodologies, and figures from the original work without proper attribution, violating the ethical standards of the journal and academic publishing. The authors were contacted and asked to provide an explanation for these concerns. The corresponding author acknowledged the oversight and accepted responsibility for the duplication. Consequently, the authors formally requested the withdrawal of the paper. As per journal policy, the Editor-in-Chief has decided to retract the article due to a breach of publication ethics. The journal sincerely regrets that these issues were not detected during the manuscript screening and review process and apologizes to the authors of the original article, as well as to the readers of the journal. For more information on the journal’s ethical policies, please visit: Retraction Policy.
A Review of Generative Models for 3D Vehicle Wheel Generation and Synthesis Akande, Timileyin Opeyemi; Alabi, Oluwaseyi Omotayo; Oyinloye, Julianah B.
Journal of Computing Theories and Applications Vol. 1 No. 4 (2024): JCTA 1(4) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10125

Abstract

Integrating deep learning methodologies is pivotal in shaping the continuous evolution of computer-aided design (CAD) and computer-aided engineering (CAE) systems. This review explores the integration of deep learning in CAD and CAE, particularly focusing on generative models for simulating 3D vehicle wheels. It highlights the challenges of traditional CAD/CAE, such as manual design and simulation limitations, and proposes deep learning, especially generative models, as a solution. The study aims to automate and enhance 3D vehicle wheel design, improve CAE simulations, predict mechanical characteristics, and optimize performance metrics. It employs deep learning architectures like variational autoencoders (VAEs), convolutional neural networks (CNNs), and generative adversarial networks (GANs) to learn from diverse 3D wheel designs and generate optimized solutions. The anticipated outcomes include more efficient design processes, improved simulation accuracy, and adaptable design solutions, facilitating the integration of deep learning models into existing CAD/CAE systems. This integration is expected to transform design and engineering practices by offering insights into the potential of these technologies.
Classifying Beta-Secretase 1 Inhibitor Activity for Alzheimer’s Drug Discovery with LightGBM Noviandy, Teuku Rizky; Nisa, Khairun; Idroes, Ghalieb Mutig; Hardi, Irsan; Sasmita, Novi Reandy
Journal of Computing Theories and Applications Vol. 1 No. 4 (2024): JCTA 1(4) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10129

Abstract

This study explores the utilization of LightGBM, a gradient-boosting framework, to classify the inhibitory activity of beta-secretase 1 inhibitors, addressing the challenges of Alzheimer's disease drug discovery. The study aims to enhance classification performance by focusing on overcoming the limitations of traditional statistical models and conventional machine-learning techniques in handling complex molecular datasets. By sourcing a dataset of 7298 compounds from the ChEMBL database and calculating molecular descriptors for each compound as features, we employed LightGBM in conjunction with a set of carefully selected molecular descriptors to achieve a nuanced analysis of compound activities. The model's efficiency was benchmarked against traditional machine-learning algorithms, revealing LightGBM's superior accuracy (84.93%), precision (87.14%), sensitivity (89.93%), specificity (77.63%), and F1-score (88.17%) in classifying beta-secretase 1 inhibitor activity. The study underscores the critical role of molecular descriptors in understanding drug efficacy, highlighting LightGBM's potential in streamlining the virtual screening process. Conclusively, the findings advocate for LightGBM's adoption in computational drug discovery, offering a promising avenue for advancing Alzheimer's disease therapeutic development by facilitating the identification of potential drug candidates with enhanced precision and reliability.
Enhanced Freelance Matching: Integrated Data Analysis and Machine Learning Techniques Sahnoun, Ismail; Elhadjamor, Emna Ammar
Journal of Computing Theories and Applications Vol. 1 No. 4 (2024): JCTA 1(4) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10152

Abstract

The objective of this research is to devise a personalized recommendation system for a freelancing platform to optimize the freelancer project matching process. This enhancement is intended to improve user experience and increase the success rate of projects. The system will recommend projects to freelancers based on their skills and preferences by employing data analysis and machine learning methodologies. The research methodology adheres to the Cross Industry Standard Process for Data Mining (CRISP-DM), incorporating six stages: Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment. The proposed project employs a hybrid recommendation strategy, integrating Content-Based Filtering through KNearest Neighbors (K-NN) and Cosine Similarity, Collaborative Filtering via Singular Value Decomposition (SVD), and recommendations derived from Word2vec. Evaluation metrics such as precision, recall, F1 score, MAP, and MRR are utilized to assess model performance. The results, including precision scores of 0.80 for KNN and 0.728 for SVD, recall scores of 0.60 for KNN and 0.623 for SVD, and F1 scores of 0.69 for KNN and 0.671 for SVD, as well as a MAP of 0.75 and MRR of 0.80 for Word2vec, demonstrate the efficacy of the hybrid recommendation system in delivering accurate and varied project suggestions to freelancers, with a weighted average ensemble learning model emerging as the most effective solution.
Enhancing the Random Forest Model via Synthetic Minority Oversampling Technique for Credit-Card Fraud Detection Aghware, Fidelis Obukohwo; Ojugo, Arnold Adimabua; Adigwe, Wilfred; Odiakaose, Christopher Chukwufumaya; Ojei, Emma Obiajulu; Ashioba, Nwanze Chukwudi; Okpor, Margareth Dumebi; Geteloma, Victor Ochuko
Journal of Computing Theories and Applications Vol. 1 No. 4 (2024): JCTA 1(4) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10323

Abstract

Fraudsters increasingly exploit unauthorized credit card information for financial gain, targeting un-suspecting users, especially as financial institutions expand their services to semi-urban and rural areas. This, in turn, has continued to ripple across society, causing huge financial losses and lowering user trust implications for all cardholders. Thus, banks cum financial institutions are today poised to implement fraud detection schemes. Five algorithms were trained with and without the application of the Synthetic Minority Over-sampling Technique (SMOTE) to assess their performance. These algorithms included Random Forest (RF), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Support Vector Machines (SVM), and Logistic Regression (LR). The methodology was implemented and tested through an API using Flask and Streamlit in Python. Before applying SMOTE, the RF classifier outperformed the others with an accuracy of 0.9802, while the accuracies for LR, KNN, NB, and SVM were 0.9219, 0.9435, 0.9508, and 0.9008, respectively. Conversely, after the application of SMOTE, RF achieved a prediction accuracy of 0.9919, whereas LR, KNN, NB, and SVM attained accuracies of 0.9805, 0.9210, 0.9125, and 0.8145, respectively. These results highlight the effectiveness of combining RF with SMOTE to enhance prediction accuracy in credit card fraud detection.
A Scoping Literature Review of Artificial Intelligence in Epidemiology: Uses, Applications, Challenges and Future Trends Jillahi, Kamal Bakari; Iorliam, Aamo
Journal of Computing Theories and Applications Vol. 1 No. 4 (2024): JCTA 1(4) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10350

Abstract

Artificial Intelligence (AI) has been applied to many human endeavors, and epidemiology is no exception. The AI community has recently seen a renewed interest in applying AI methods and approaches to epidemiological problems. However, a number of challenges are impeding the growth of the field. This work reviews the uses and applications of AI in epidemiology from 1994 to 2023. The following themes were uncovered: epidemic outbreak tracking and surveillance, Geo-location and visualization of epidemics data, Tele-Health, vaccine resistance and hesitancy sentiment analysis, diagnosis, predicting and monitoring recovery and mortality, and decision support systems. Disease detection received the most interest during the time under review. Furthermore, the following AI approaches were found to be used in epidemiology: prediction, geographic information systems (GIS), knowledge representation, analytics, sentiment analysis, contagion analysis, warning systems, and classification. Finally, the work makes the following findings: the absence of benchmark datasets for epidemiological purposes, the need to develop ethical guidelines to regulate the development of AI for epidemiology as this is a major issue impeding it’s growth, a concerted and continuous collaboration between AI and Epidemiology experts to grow the field, the need to develop explainable and privacy retaining AI methods for more secured and human understandable AI solutions.
An Intelligent Telediagnosis of Acute Lymphoblastic Leukemia using Histopathological Deep Learning Khan Tusar, Md. Taufiqul Haque; Islam, Md. Touhidul; Sakil, Abul Hasnat; Khandaker, M N Huda Nahid; Hossain, Md. Monir
Journal of Computing Theories and Applications Vol. 2 No. 1 (2024): JCTA 2(1) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10358

Abstract

Leukemia, a global health challenge characterized by malignant blood cell proliferation, demands innovative diagnostic techniques due to its increasing incidence. Among leukemia types, Acute Lymphoblastic Leukemia (ALL) emerges as a particularly aggressive form affecting diverse age groups. This study proposes an advanced mechanized system utilizing Deep Neural Networks for detecting ALL blast cells in microscopic blood smear images. Achieving a remarkable accuracy of 97% using MobileNetV2, our system demonstrates high sensitivity and specificity in identifying multiple ALL sub-types. Furthermore, we introduce cutting-edge telediagnosis software facilitating real-time support for clinicians in promptly and accurately diagnosing various ALL subtypes from microscopic blood smear images. This research aims to enhance leukemia diagnosis efficiency, which is crucial for the timely intervention and managing this life-threatening condition.
NURBs Based Multi-robots Path Planning with Obstacle Avoidance Belaidi, Hadjira; Demim, Fethi
Journal of Computing Theories and Applications Vol. 1 No. 4 (2024): JCTA 1(4) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10387

Abstract

The primary problem for multi-robot displacement and motion phase solving requires that the robots prevent themselves from colliding with each other as well as stationary obstacles. In certain situations, robot conflict is unavoidable if one robot views its neighbors as immovable obstacles. Hence, this paper proposes a new NURBs (Non-Uniform Rational B-spline) based algorithm for multi-robot path planning in a crowded environment. First, the proposed technique finds each robot's free, smooth, optimal path while avoiding collision with the existing obstacles. Secondly, the prospect of possible collision between the preplanned trajectories will be computed to allow the robots to navigate in the same workspace and coordinate between them. Then, each robot's time to arrive at potential collision sites is computed based on its speed. As a result, the robots involved in the collision must choose whether to use the robot priority technique to prevent the collision. Simulation results under different scenarios and comparisons with previous works are provided to validate the work. The obtained results prove that the proposed approach is accurate (as the robot's instantaneous speed is taken into consideration), fast (as there is no need to broadcast the robots’ positions), the robots’ paths are optimal and smooth (to avoid jerk movements), and the approach ensures that the robots will not be trapped by local minima problem.
Integrating Convolutional Neural Network and Weighted Moving Average for Enhanced Human Fall Detection Performance Pyar, Kyi
Journal of Computing Theories and Applications Vol. 2 No. 1 (2024): JCTA 2(1) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10428

Abstract

This study proposes an approach for human fall classification utilizing a combination of Weighted Moving Average (WMA) and Convolutional Neural Networks (CNN) on the SisFall dataset. Falls among elderly individuals pose a significant public health concern, necessitating effective automated detection systems for timely intervention and assistance. The SisFall dataset, comprising accelerometer data collected during simulated falls and activities of daily living, serves as the basis for training and evaluating the proposed classification system. The proposed method begins by preprocessing accelerometer data using a WMA technique to enhance signal quality and reduce noise. Subsequently, the preprocessed data are fed into a CNN architecture optimized for feature extraction and fall classification. The CNN leverages its ability to automatically learn discriminative features from raw sensor data, enabling robust and accurate classification of fall and non-fall events. Experimental results demonstrate the efficacy of the proposed approach in accurately distinguishing between fall and non-fall activities, achieving high classification performance metrics such as accuracy, precision, recall, and F1-score. Comparative analysis with existing methods showcases the WMA-CNN hybrid approach's superiority in classification accuracy and robustness. Overall, the proposed methodology presents a promising framework for real-time human fall classification using sensor data, offering potential applications in wearable devices, ambient assisted living systems, and healthcare monitoring technologies to enhance safety and well-being among elderly individuals.
Leveraging YOLO Models for Safety Equipment Detection on Construction Sites Çiftçi, Melike; Türkdamar, Mehmet Ugur; Öztürk, Celal
Journal of Computing Theories and Applications Vol. 1 No. 4 (2024): JCTA 1(4) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.10453

Abstract

Occupational safety encompasses a range of practices adopted to protect the health and safety of employees. In the construction and industrial sectors, employees may be exposed to various risks such as falls, impacts, temperature changes and the effects of chemical substances. For this reason, personal protective equipment (PPE) is an important element for protecting employees against risks. The effective use of equipment such as a hardhat, mask, and vest makes an important contribution to the prevention of occupational accidents and health problems by ensuring the safety of employees. This study conducted three separate experiments investigating the potential of deep learning methods on occupational safety. In the first experiment, the YOLOv5n and YOLOv8n models were trained on the same data set with ten classes, and their performance was compared. In the second experiment, the YOLOv8n model was trained on a 2-class dataset to examine how the number of classes affected the model's performance. As a result of the experiments, it was seen that it emphasized the potential of deep learning and object detection methods to quickly and effectively monitor and evaluate the use of personal protective equipment.

Page 4 of 10 | Total Record : 92