cover
Contact Name
De Rosal Ignatius Moses Setiadi
Contact Email
moses@dsn.dinus.ac.id
Phone
-
Journal Mail Official
editorial.jcta@gmail.com
Editorial Address
H building, Dian Nuswantoro University Imam Bonjol street no. 207 Semarang, Central Java, Indonesia
Location
Kota semarang,
Jawa tengah
INDONESIA
Journal of Computing Theories and Applications
ISSN : -     EISSN : 30249104     DOI : 10.62411/jcta
Core Subject : Science,
Journal of Computing Theories and Applications (JCTA) is a refereed, international journal that covers all aspects of foundations, theories and the practical applications of computer science. FREE OF CHARGE for submission and publication. All accepted articles will be published online and accessed for free. The review process is carried out rapidly, about two until three weeks, to get the first decision. The journal publishes only original research papers in the areas of, but not limited to: Artificial Intelligence Big Data Bioinformatics Biometrics Cloud Computing Computer Graphics Computer Vision Cryptography Data Mining Fuzzy Systems Game Technology Image Processing Information Security Internet of Things Intelligent Systems Machine Learning Mobile Computing Multimedia Technology Natural Language Processing Network Security Pattern Recognition Signal Processing Soft Computing Speech Processing Special emphasis is given to recent trends related to cutting-edge research within the domain. If you want to become an author(s) in this journal, you can start by accessing the About page. You can first read the Policies section to find out the policies determined by the JCTA. Then, if you submit an article, you can see the guidelines in the Author Guidelines or Author Guidelines section. Each journal submission will be made online and requires prospective authors to register and have an account to be able to submit manuscripts.
Articles 92 Documents
CoSoGMIR: A Social Graph Contagion Diffusion Framework using the Movement-Interaction-Return Technique Ojugo, Arnold Adimabua; Ejeh, Patrick Ogholuwarami; Akazue, Maureen Ifeanyi; Ashioba, Nwanze Chukwudi; Odiakaose, Christopher Chukwufunaya; Ako, Rita Erhovwo; Nwozor, Blessing; Emordi, Frances Uche
Journal of Computing Theories and Applications Vol. 1 No. 2 (2023): JCTA 1(2) 2023
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jcta.v1i2.9355

Abstract

Besides the inherent benefits of exchanging information and interactions between nodes on a social graph, they can also become a means for the propagation of knowledge. Social graphs have also become a veritable structure for the spread of disease outbreaks. These and its set of protocols are deployed as measures to curb its widespread effects as it has also left network experts puzzled. The recent lessons from the COVID-19 pandemic continue to reiterate that diseases will always be around. Nodal exposure, adoption/diffusion of disease(s) among interacting nodes vis-a-vis migration of nodes that cause further spread of contagion (concerning COVID-19 and other epidemics) has continued to leave experts bewildered towards rejigging set protocols. We model COVID-19 as a Markovian process with node targeting, propagation and recovery using migration-interaction as a threshold feat on a social graph. The migration-interaction design seeks to provision the graph with minimization and block of targeted diffusion of the contagion using seedset(s) nodes with a susceptible-infect policy. The study results showed that migration and interaction of nodes via the mobility approach have become an imperative factor that must be added when modeling the propagation of contagion or epidemics.
Evaluation of University Websites in Nigeria using the Web Content Accessibility Guidelines Ogbuju, Emeka; Ihinkalu, Olalekan; Ajulo, Emmanuel; Jaiyeoba, Oluwayemisi; Yemi-Peters, Victoria
Journal of Computing Theories and Applications Vol. 1 No. 2 (2023): JCTA 1(2) 2023
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jcta.v1i2.9381

Abstract

Providing accessible open educational resources (OER) is essential for users with impairments to access university resources. To achieve this, web content accessibility guidelines (WCAG) have been developed. In this study, we used the AChecker web accessibility evaluation tool to assess the content of 42 federal university websites in Nigeria and recorded their conformance level to the WCAG. The findings show that at Level A (Minimal Compliance), there were 855 known problems, 55 likely problems, and 7536 potential problems. At Level AA (Acceptable Compliance), 2516 known problems, 58 likely problems, and 15537 potential problems were identified. At Level AAA (Optimal Compliance), 2679 known problems were found, while there were no likely problems, and 16772 potential problems. The results indicated that most websites did not conform to the accessibility guidelines, highlighting the need for educational institutions to comply with WCAG2.1 content standard. The study recommends introducing accessibility training courses in web design and development to ensure effective OER creation for people with diverse abilities. Furthermore, enforcing the implementation of these guidelines by flagging down non-compliant educational websites was suggested. There is a problem of lack of accessibility in federal university websites in Nigeria, leading to unequal access to web content for users with varying abilities. The study aimed to identify aspects of the websites where accessibility needs to be improved and promote diversity and inclusiveness for users with different abilities to have equal access to web content.
Solving the Green Economic Load Dispatch by Applying the Novel Meta-heuristic Algorithm Tang, Nguyen Anh; Cuong, Nguyen Minh Duc
Journal of Computing Theories and Applications Vol. 1 No. 2 (2023): JCTA 1(2) 2023
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jcta.v1i2.9389

Abstract

This study focuses on solving the green economic load dispatch problem by considering the presence of green energy sources, including wind energy and solar power plants. The main objective function of the whole study is to minimize the total fuel cost (TFC) of all the thermal generating sources (TGSs) in the system. Moreover, the multiple selection of all TGSs is also evaluated. Fire hawk optimization (FHO) and the Zebra optimization algorithm (ZOA) are applied to solve the problem of achieving the best TFC value and satisfying all the constraints involved. The results indicated that ZOA can achieve a better optimal solution compared to FHO. Particularly, the results obtained by ZOA are completely superior to FHO in all comparison criteria at two load demand levels, such as Best TFC value (Best.Cost), Average TFC value (Aver.Cost), and Maximum TFC value (Max.Cost). On top of that, ZOA is the only algorithm of two applied ones providing the fast convergence capability to the optimal value of the main objective functions in two cases of load demand levels. Therefore, ZOA is an efficient search method to deal with such GELD problems.
Butterflies Recognition using Enhanced Transfer Learning and Data Augmentation Adityawan, Harish Trio; Farroq, Omar; Santosa, Stefanus; Islam, Hussain Md Mehedul; Sarker, Md Kamruzzaman; Setiadi, De Rosal Ignatius Moses
Journal of Computing Theories and Applications Vol. 1 No. 2 (2023): JCTA 1(2) 2023
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jcta.v1i2.9443

Abstract

Butterflies’ recognition serves a crucial role as an environmental indicator and a key factor in plant pollination. The automation of this recognition process, facilitated by Convolutional Neural Networks (CNNs), can expedite this task. Several pre-trained CNN models, such as VGG, ResNet, and Inception, have been widely used for this purpose. However, the scope of previous research has been somewhat constrained, focusing only on a maximum of 15 classes. This study proposes to modify the CNN InceptionV3 model and combine it with three data augmentations to recognize up to 100 butterfly species. To curb overfitting, this study employs a series of data augmentation techniques. In parallel, we refine the InceptionV3 model by reducing the number of layers and integrating four new layers. The test results demonstrate that our proposed model achieves an impressive accuracy of 99.43% for 15 classes with only 10 epochs, exceeding prior models by approximately 5%. When extended to 100 classes, the model maintains a high accuracy rate of 98.49% with 50 epochs. The proposed model surpasses the performance of standard pre-trained models, including VGG16, ResNet50, and InceptionV3, illustrating its potential for broader application.
A Comparative Analysis of Generative Artificial Intelligence Tools for Natural Language Processing Iorliam, Aamo; Ingio, Joseph Abunimye
Journal of Computing Theories and Applications Vol. 1 No. 3 (2024): JCTA 1(3) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.9447

Abstract

Generative artificial intelligence tools have recently attracted a great deal of attention. This is because of their huge advantages, which include ease of usage, quick generation of answers to requests, and the human-like intelligence they possess. This paper presents a vivid comparative analysis of the top 9 generative artificial intelligence (AI) tools, namely ChatGPT, Perplexity AI, YouChat, ChatSonic, Google's Bard, Microsoft Bing Assistant, HuggingChat, Jasper AI, and Quora's Poe, paying attention to the Pros and Cons each of the AI tools presents. This comparative analysis shows that the generative AI tools have several Pros that outweigh the Cons. Further, we explore the transformative impact of generative AI in Natural Language Processing (NLP), focusing on its integration with search engines, privacy concerns, and ethical implications. A comparative analysis categorizes generative AI tools based on popularity and evaluates challenges in development, including data limitations and computational costs. The study highlights ethical considerations such as technology misuse and regulatory challenges. Additionally, we delved into AI Planning techniques in NLP, covering classical planning, probabilistic planning, hierarchical planning, temporal planning, knowledge-driven planning, and neural planning models. These planning approaches are vital in achieving specific goals in NLP tasks. In conclusion, we provide a concise overview of the current state of generative AI, including its challenges, ethical considerations, and potential applications, contributing to the academic discourse on human-computer interaction.  
UNMASKING FRAUDSTERS: Ensemble Features Selection to Enhance Random Forest Fraud Detection Akazue, Maureen Ifeanyi; Debekeme, Irene Alamarefa; Edje, Abel Efe; Asuai, Clive; Osame, Ufuoma John
Journal of Computing Theories and Applications Vol. 1 No. 2 (2023): JCTA 1(2) 2023
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jcta.v1i2.9462

Abstract

Fraud detection is used in various industries, including banking institutes, finance, insurance, government agencies, etc. Recent increases in the number of fraud attempts make fraud detection crucial for safeguarding financial information that is confidential or personal. Many types of fraud problems exist, including card-not-present fraud, fake Marchant, counterfeit checks, stolen credit cards, and others. An ensemble feature selection technique based on Recursive feature elimination (RFE), Information gain (IG), and Chi-Squared (X2) in concurrence with the Random Forest algorithm, was proposed to give research findings and results on fraud detection and prevention. The objective was to choose the essential features for training the model. The Receiver Operating Characteristic (ROC) Score, Accuracy, F1 Score, and Precision are used to evaluate the model's performance. The findings show that the model can differentiate between fraudulent transactions and those that are not, with an ROC Score of 95.83% and an Accuracy of 99.6%. The F1 Score of 99.6%% and precision of 100% further sustain the model's ability to detect fraudulent transactions with the least false positives correctly. The ensemble feature selection technique reduced training time and did not compromise the model's performance, making it a valuable tool for businesses in preventing fraudulent transactions.
Dynamic and Static Handwriting Assessment in Parkinson's Disease: A Synergistic Approach with C-Bi-GRU and VGG19 Ali, Sohaib; Hashmi, Adeel; Hamza, Ali; Hayat, Umar; Younis, Hamza
Journal of Computing Theories and Applications Vol. 1 No. 2 (2023): JCTA 1(2) 2023
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jcta.v1i2.9469

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder causing a decline in dopamine levels, impacting the peripheral nervous system and motor functions. Current detection methods often identify PD at advanced stages. This study addresses early-stage detection using handwriting analysis, specifically exploring the PaHaW dataset for pen pressure and stroke movement data. Evaluating online and offline features, the research employs pre-trained CNN models (VGG 19 and AlexNet) for offline datasets, achieving an overall accuracy of 0.53. For online datasets, velocity, and acceleration features are extracted and classified using Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), and recurrent neural networks (RNN), with GRU yielding the highest accuracy at 0.57. Notably, the convolution-based model C-Bi-GRU surpasses other architectures with a remarkable 0.75 accuracy, emphasizing its efficacy in early PD detection. These findings underscore the potential of handwriting analysis as a diagnostic tool for PD, contributing valuable insights for further research and development in medical diagnostics.
Generating Harmonious Colors through the Combination of n-Grams and K-means Sharma, Shreeniwas; Tandukar, Jyoti; Bista, Rabindra
Journal of Computing Theories and Applications Vol. 1 No. 2 (2023): JCTA 1(2) 2023
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33633/jcta.v1i2.9470

Abstract

Among the many approaches to studying color harmony tried so far, a relatively recent method is to leverage a large number of human-created and ranked color palettes, such as those hosted at colourlovers.com. Analysis of these large datasets could provide insights into the nature of color harmony but is usually overwhelming because of the sheer number of slightly differing colors. It is possible to quantize the colors in these color palettes to a manageable set of discrete colors without significantly affecting the harmony perception of the palette. Considering the quantized colors as words and the palettes as sentences, it is possible to form and compute the probabilities of n-Grams in the sentences. In this study, we create bigrams and trigrams from the corpus of highly ranked color palettes and use them to predict new color combinations.  Respondents were asked to like or dislike the patterns colored with these color combinations. It was found that the new color combinations thus formed were almost as harmonious and pleasing as the originals.
BEHeDaS: A Blockchain Electronic Health Data System for Secure Medical Records Exchange Oladele, James Kolapo; Ojugo, Arnold Adimabua; Odiakaose, Christopher Chukwufunaya; Emordi, Frances Uchechukwu; Abere, Reuben Akporube; Nwozor, Blessing; Ejeh, Patrick Ogholuwarami; Geteloma, Victor Ochuko
Journal of Computing Theories and Applications Vol. 1 No. 3 (2024): JCTA 1(3) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.9509

Abstract

Blockchain platforms propagate into every facet, including managing medical services with professional and patient-centered applications. With its sensitive nature, record privacy has become imminent with medical services for patient diagnosis and treatments. The nature of medical records has continued to necessitate their availability, reachability, accessibility, security, mobility, and confidentiality. Challenges to these include authorized transfer of patient records on referral, security across platforms, content diversity, platform interoperability, etc. These, are today – demystified with blockchain-based apps, which proffers platform/application services to achieve data features associated with the nature of the records. We use a permissioned-blockchain for healthcare record management. Our choice of permission mode with a hyper-fabric ledger that uses a world-state on a peer-to-peer chain – is that its smart contracts do not require a complex algorithm to yield controlled transparency for users. Its actors include patients, practitioners, and health-related officers as users to create, retrieve, and store patient medical records and aid interoperability. With a population of 500, the system yields a transaction (query and https) response time of 0.56 seconds and 0.42 seconds, respectively. To cater to platform scalability and accessibility, the system yielded 0.78 seconds and 063 seconds, respectively, for 2500 users.
Strategic Feature Selection for Enhanced Scorch Prediction in Flexible Polyurethane Form Manufacturing Omoruwou, Felix; Ojugo, Arnold Adimabua; Ilodigwe, Solomon Ebuka
Journal of Computing Theories and Applications Vol. 1 No. 3 (2024): JCTA 1(3) 2024
Publisher : Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jcta.9539

Abstract

The occurrence of scorch during the production of flexible polyurethane is a significant issue that negatively impacts foam products' resilience and generally jeopardizes their integrity. The likelihood of foam product failure can be decreased by optimizing production variables based on machine learning algorithms used to predict the occurrence of scorch. Investigating technology is required because prevention is the best approach to dealing with this problem. Hence, machine learning algorithms were trained to predict the occurrence of scorch using the thermodynamic profile of polyurethane foam, which is made up of recorded production variables. A variety of heuristics algorithms were trained and assessed for how well they performed, namely XGBoost, Decision trees, Random Forest, K-nearest neighbors, Naive Bayes, Support Vector Machines, and Logistic Regression. The XGboost ensemble was found to perform best. It outperformed others with an accuracy of 98.3% (i.e., 0.983), followed by logistic regression, decision tree, random forest, K-nearest neighbors, and naïve Bayes, yielding a training accuracy of 88.1%, 66.7%, 84.2%, 87.5%, and 67.5% respectively. The XGBoost was finally used, yielding 2-distinct cases of non(occurrence) of scorch. Ensemble demonstrates that it is quite capable and is an effective way to predict the occurrence of scorch.

Page 2 of 10 | Total Record : 92