cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota tangerang selatan,
Banten
INDONESIA
TEKNIK INFORMATIKA
ISSN : 19799160     EISSN : 25497901     DOI : -
Core Subject : Science,
Jurnal Teknik Informatika merupakan wadah bagi insan peneliti, dosen, praktisi, mahasiswa dan masyarakat ilmiah lainnya untuk mempublikasikan artikel hasil penelitian, rekayasa dan kajian di bidang Teknologi Informasi. Jurnal Teknik Informatika diterbitkan 2 (dua) kali dalam setahun.
Arjuna Subject : -
Articles 262 Documents
Attendance Recognation by Using Smart Meter Based On IoT Study Case : FST UIN Jakarta Feri Fahrianto; Hendra Bayu Suseno; Alfatta Reza
JURNAL TEKNIK INFORMATIKA Vol 12, No 1 (2019): JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v12i1.11043

Abstract

State Islamic University Syarif Hidayatullah Jakarta as rapidly growing university toward world-class research university placed in the edge of Jakarta has academic information centre running by Pustipanda (The Center of Information Technology and Database). The acadmic information system (AIS) has been used for recording an academic activity in university for almost a decade, this information system has a functionality for detecting the lecturer attandancity, but the attendance system needs to be input by admin. In this research, the system to detect attendancity from lecturer is build and synchronize to universisty academic information system.  Internet of Things, based on ITU-T 2015, some objects are able to transmit data among object by using Internet connection. It means by this technology the Internet used has been widely changed, from human to machine communication now also become machine-to-machine communications. By using this technology a small object or device is able to implement into electrical system to detect an activity occured in the room. Things implemented in the room are able to monitor which electronic device is active and motion of moving objects, also the position of objects. The communication connection between smart phones and acces point in the class room is also monitored in order to identify the lecturer identity.
Challenges and Strategies in Forensic Investigation: Leveraging Technology for Digital Security Using Log/Event Analysis Method Ammar Yasir Nasution; Hartono Hartono; Rika Rosnelly
JURNAL TEKNIK INFORMATIKA Vol 18, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.42815

Abstract

Cybersecurity threats continue to evolve, necessitating advanced techniques for network anomaly detection. This study developed a comprehensive methodology for detecting network anomalies by leveraging sophisticated log and event analysis using machine learning algorithms. By employing a Naive Bayes classification approach on a synthetic cybersecurity dataset comprising 40,000 entries with 25 unique features, the research aimed to enhance anomaly detection precision. The methodology involved meticulous data preprocessing, feature selection, and strategic model validation techniques, including cross-validation and external benchmarking. Comparative analysis with K-Nearest Neighbors and Support Vector Machine algorithms demonstrated the Naive Bayes method's superior performance, achieving a classification accuracy of 94.8%, an Area Under the Curve (AUC) of 0.949, and a Matthews Correlation Coefficient of 0.896. The study identified critical parameters influencing anomaly detection, such as source port characteristics and attack signatures. These findings contribute significant insights into machine learning-based network security strategies, offering a robust framework for early threat identification and mitigation.
Application of the ELECTRE I and ELECTRE IS Method to Optimize Maize Seed Selection in Cameroon: A Multi-Criteria Approach Tanone Demas; Guidana Gazawa Fréderic; Yaboki Elisabeth
JURNAL TEKNIK INFORMATIKA Vol 18, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.41903

Abstract

This study aims to help Cameroonian farmers choose the best maize seeds to improve their yields. To achieve this, we evaluated 15 varieties based on five essential criteria: cycle length, yield per hectare, cob quality, stem height, and grain weight. Using the ELECTRE I and ELECTRE IS multi-criteria decision-making methods, we selected four particularly high-performing varieties: CLH103, CMS8602, CMS9015, and CMS 8501. These seeds offer a good balance between productivity and adaptation to local conditions, with potential yields of up to 10 tons per hectare. In-depth analyses have confirmed the reliability of these results, assuring farmers of a robust and effective choice. These recommendations can help improve food security and the profitability of farms in Cameroon
Analyzing User Satisfaction of a Study Abroad Guidance Company Website Using the Customer Satisfaction Index (CSI) Method Fajrian Nispi; Ana Kurniawati; Lily Wulandari
JURNAL TEKNIK INFORMATIKA Vol 17, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i1.34612

Abstract

XYZ is an education technology company dedicated to assisting Indonesian students in gaining acceptance to universities worldwide through full scholarship, partial, or self-funding. Until 2024, XYZ has a thousand alumni accepted in 46 countries and many universities worldwide. One of the marketing trackers that XYZ has is the website. With this website, the company will deliver the service to customers and receive user feedback to run and improve their services. The measurement of user satisfaction level can be used to improve the quality of service in digital media. The method used in this study to measure user satisfaction level is the Customer Satisfaction Index (CSI), which evaluates satisfaction across five (5) dimensions: usability, information quality, assurance, reliability, and data accessibility. This method's result shows a value of 83.64%, which means the XYZ website performance is in the "Very Satisfied" category. These findings suggest that XYZ Company's website is highly effective and has a "Very Satisfied" result category in meeting user needs, paving the way for continued success in their mission to assist Indonesian students in pursuing global education opportunities
Evaluation of An Existing System Using The System Usability Scale (SUS) as A Guideline for System Improvement M. Khairul Anam; Susanti Susanti; Nurjayadi Nurjayadi; Fransiskus Zoromi; Atalya Kurnia Sari
JURNAL TEKNIK INFORMATIKA Vol 18, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.40766

Abstract

The e-Polvot system at the University of Science and Technology Indonesia (USTI) is a digital platform used for student elections, replacing traditional paper-based voting to enhance efficiency and minimize election fraud. This study evaluates the system using the System Usability Scale (SUS) to assess its usability, including efficiency, effectiveness, and user satisfaction. However, SUS alone does not determine failure points but provides a usability score that reflects user perception. A survey was conducted with 88 respondents from three different academic programs, which showed that while the system generally received a "Good" usability rating, certain areas require enhancement to improve user engagement and satisfaction. Based on the findings, this study recommends enhancing the user interface, providing targeted user training, and introducing additional features to broaden the system’s application across academic units. Additionally, the study highlights the potential for expanding the system's functionality beyond student elections, supporting activities such as departmental voting and organizational decision-making processes. These improvements aim to increase user satisfaction and usability, making the system a more effective tool for various academic and institutional contexts.
Diversity Balancing in Two-Stage Collaborative Filtering for Book Recommendation Systems Rifqi Fauzia Muttaqien; Dade Nurjanah; Hani Nurrahmi
JURNAL TEKNIK INFORMATIKA Vol 16, No 2 (2023): JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v16i2.36580

Abstract

A book recommender system is a system used to provide relevant book recommendations for readers. One approach that is often used in recommender systems is Collaborative Filtering (CF). CF provides book recommendations based on books liked by other similar users. However, CF only provides recommendations for items that are popular, so items that are less popular will be difficult to recommend. Therefore, we propose a book recommendation system based on Two-stages CF using the Diversity Balancing method. Diversity Balancing method in CF is used to balance diversity in the recommendation results by replacing popular items with less popular relevant items. System accuracy is measured using precision and recall, while diversity is measured using personal diversity and aggregate diversity. The test results show that the accuracy of the proposed system increases with the increasing number of recommended items. meanwhile, the diversity of recommended items continues to decrease as more items are included in the recommendation list. In consideration of the trade-off between accuracy and diversity, our system achieves a recall score of 0.301, a precision score of 0.282, a PD score of 0.048, and an AD score of 0.095 with a recommendation list size of 8 items.
Online Shop Product Sales Prediction Using Multilayer Perceptron Algorithm Erica Rian Safitri; Lili Tanti; Wanayumini Wanayumini
JURNAL TEKNIK INFORMATIKA Vol 18, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.44286

Abstract

This study aims to develop a predictive model for forecasting product sales using the Multilayer Perceptron (MLP) algorithm. The model's performance was evaluated using key metrics, including the Mean Absolute Error (MAE), Mean Squared Error (MSE), and R² score. The model achieved an MAE of 0.861, an MSE of 9.521, and an impressive R² score of 0.999, demonstrating its ability to accurately predict product sales with minimal error. Feature correlation analysis identified key variables related to the target prediction, which is the number of products ready for shipment, underscoring the importance of feature selection in enhancing model performance. Prediction results revealed variability among product sales, with products like Foodpak Matte 245 (Code 49) predicted to sell approximately 244.31 units, while others like Stiker Kertas (Code 90) showed lower sales forecasts. The findings suggest that strategic interventions may be necessary to boost sales for underperforming items and capitalize on the demand for popular products. Future improvements, such as optimizing the network architecture, experimenting with activation functions and optimization algorithms, and incorporating external factors such as market trends, could further enhance the model’s accuracy and predictive power. Overall, the MLP model demonstrates strong potential for product sales forecasting, providing valuable insights for business decision-making.
Optimizing Naïve Bayes Method for Felder-Silverman Learning Style Model Identification Hanatyani Nur Asmi; Slamet Risnanto; Othman Bin Mohd
JURNAL TEKNIK INFORMATIKA Vol 18, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.40936

Abstract

One important issue in education institusion is the differences in students learning styles, which requires educators to pay attention to individual learning preferences. The manual learning style identification method is considered less effective in terms of time and data accuracy. This study aims to develop a student learning style identification system using the Felder-Silverman model and the Naïve Bayes method, This system is designed to assist lecturers in adjusting learning strategies according to student learning preferences, thus increasing the effectiveness of the learning process. The Naïve Bayes method was applied by analyzing student datasets and determining the accuracy of learning style identification. The validation results showed significant identification accuracy: 85% for the active-reflective dimension, 96% for the sensitive-intuitive dimension, 98% for the verbal-visual dimension, and 91% for the sequential-global dimension. The results of user validation show the effectiveness of the learning style identification application that has been tested based on the percentage value of each statement, and an average percentage value of 85.6% was obtained for all statements, indicating that the system functions well in identifying students' learning styles, while the results of expert validation state that the statements are in accordance with the indicators, the statements use simple and easy-to-understand language, and the identification results are appropriate. This study is expected to contribute to helping universities identify student learning styles efficiently, improve the quality of learning in higher education, and contribute to supporting an inclusive learning approach in higher education environments.
Human Fall Motion Prediction: Fall Motion Forecasting and Detection with GRU Andi Prademon Yunus; Amalia Beladinna Arifa; Yit Hong Choo
JURNAL TEKNIK INFORMATIKA Vol 17, No 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.41027

Abstract

The human fall motion prediction system is a preventive tool aimed at reducing the risk of falls. In our research, we developed a deep learning model that utilizes pose estimation to track human body posture and integrated this with a Gated Recurrent Unit (GRU) to forecast human motion and predict falls. GRU, an enhancement of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) models offers improved memorization and more efficient memory usage and performance. Our study presents the human fall motion prediction, which combines the forecasting and classification of potential falls.The CAUCAFall dataset is used as the benchmark of this study, which contains the image sequences of single human motion with ten actions conducted by ten actors. We employed the YOLOv8 Pose model to track the 2D human body pose as the input in our system. A thorough evaluation of the CAUCAFall dataset highlights the effectiveness of our proposed system. Evaluation using the CAUCAFall dataset demonstrates that the model achieved a Mean Per Joint Position Error (MPJPE) of 4.65 pixels from the ground truth, with a 70% accuracy rate in fall prediction. However, the model also exhibited a Mean Relative Error (MRE) of 0.3, indicating that 30% of the predictions were incorrect. These findings underscore the potential of the GRU-based system in fall prevention
Classification of Coconut Fruit Quality Using The K-Nearest Neighbour (K-NN) Method Based on Feature Extraction: Color, Shape, and Texture Sucinda Kardena; Fildza Izzati; Rusdah Rusdah
JURNAL TEKNIK INFORMATIKA Vol 18, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v18i1.41225

Abstract

In 2021, Indonesia was the world's largest coconut producer, with production reaching 17.1 million tons, according to the Food and Agriculture Organization (FAO). However, due to the long distribution time from farmers to consumers, the quality of coconuts often decreases, mainly due to manual classification. Coconuts that meet consumption standards are considered suitable, while coconuts that are overripe, damaged, or unripe are considered Non-standard. To overcome this problem, an automatic classification system was developed using machine learning with the K-Nearest Neighbor (K-NN) algorithm. The total required dataset is around 500, comprising 250 standard coconut datasets and 250 non-standard coconut datasets. The dataset was taken from coconut Images from Indragiri Hilir, Riau Province. Coconut features colour, shape, and texture.. The development process used the Cross Industry Standard Process for Data Mining (CRISP-DM). The evaluation used a confusion matrix .This study explores five training-test ratio data split scenarios of 90:10, 80:20, 70:30, 60:40, and 50:50. The highest accuracy, 96%, is achieved with a data split of 90:10 and a K value 5. Then, the K-NN model will be compared with other models,  for Support Vector Machine (SVM) with RBF kernel accuracy of 94%, SVM with Linear kernel of 90%, Random Forest with accuracy of 92%, and Convolutional Neural Network (CNN) with accuracy of 86%.