cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota tangerang selatan,
Banten
INDONESIA
TEKNIK INFORMATIKA
ISSN : 19799160     EISSN : 25497901     DOI : -
Core Subject : Science,
Jurnal Teknik Informatika merupakan wadah bagi insan peneliti, dosen, praktisi, mahasiswa dan masyarakat ilmiah lainnya untuk mempublikasikan artikel hasil penelitian, rekayasa dan kajian di bidang Teknologi Informasi. Jurnal Teknik Informatika diterbitkan 2 (dua) kali dalam setahun.
Arjuna Subject : -
Articles 262 Documents
Systematic Literature Review of Trend and Characteristic Agile Model Liana Trihardianingsih; Maie Istighosah; Ariel Yonatan Alin; Muhammad Ryandy Ghonim Asgar
JURNAL TEKNIK INFORMATIKA Vol 16, No 1 (2023): JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v16i1.28995

Abstract

Agile is a methodology and engineering approach for software development that encourages change in collaboration through tasks carried out at various stages of the software development life cycle. Scaled Agile Framework, Kanban, Scrum, Lean, Extreme Programming, Crystal, Dynamic System Development Method, and Feature Driven Development are a few of the approaches that go along with agile. Each of these approaches has distinct traits and qualities of its own. Every engineer and researcher needs to be aware of the benefits and characteristics of each method before deciding to use one. In order to assist engineers and researchers who will use one of these methods, this research will analyze it. The method used in this paper is a systematic literature review, which involved at 52 papers published in the previous eight years, from 2018 to 2022. This method is carried out by determining research questions, determining library initiation and selection, determining inclusion and exclusion criteria, and finally performing data extraction. This essay seeks to establish: (i) Study trends on each agile technique from 2018 to 2022 and (ii) Each agile method's characteristics. The results of this literature review indicate that Scrum and Extreme Programming have overtaken other agile methodologies as the most popular agile techniques over the last eight years. Through an analysis of the characteristics of each methodology, namely the development approach, suggested iteration time period, team communication, project size, project documentation, design, workflow approach, project coordinator, role assignment, coding, testing, and the nature of customer interaction, it is found that Scrum and Extreme Programming do have several advantages over other methodologies.
Using K-NN Algorithm for Evaluating Feature Selection on High Dimensional Datasets Fina Indri Silfana; Mula Agung Barata
JURNAL TEKNIK INFORMATIKA Vol 17, No 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.40866

Abstract

Data mining is the process of using statistics, mathematics, artificial intelligence and machine learning to identify problems that exist in data so as to produce useful information. Based on its function, data mining is grouped into description, estimation, classification, clustering, and association. K-NN is one of the best data mining methods and is widely used in research. K-NN algorithm was introduced by Fix and Hodges in 1951. K-NN algorithm is a simple algorithm and is often used to cluster supervised data. Feature selection attribute selection is a data mining technique used in the pre-processing stage. This technique works by reducing complex attributes that will be managed at the processing and analysis stage. In this study, the most effective feature selection to improve the accuracy of the K-NN algorithm by increasing accuracy by 95.12% on the breast cancer dataset and 88.75% on the prostate cancer dataset.
A Comparative Analysis of Random Forest, XGBoost, and LightGBM Algorithms for Emotion Classification in Reddit Comments Nenny Anggraini; Syopiansyah Jaya Putra; Luh Kesuma Wardhani; Farid Dhiya Ul Arif; Nashrul Hakiem; Imam Marzuki Shofi
JURNAL TEKNIK INFORMATIKA Vol 17, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i1.38651

Abstract

This research aims to compare the performance of three classification algorithms, namely Random Forest, XGBoost, and LightGBM, in classifying emotions in Reddit comments. Emotion classification in Reddit comments is a complex classification problem due to its numerous variations and ambiguities. This research utilizes the GoEmotions Fine-Grained dataset, filtered down to 7,325 Reddit comments with 5 different basic emotion labels. In this study, data preprocessing steps, feature extraction using CountVectorizer and TF-IDF, and hyperparameter tuning using GridSearchCV for each algorithm are conducted. Subsequently, model evaluation is performed using Cross-Validation and confusion matrix. The results of the study indicate that Random Forest outperforms the XGBoost and LightGBM algorithm with an accuracy of 75.38% compared to XGBoost with 69.05% accuracy and LightGBM with 66.63% accuracy.
Machine Learning for the Model Prediction of Final Semester Assessment (FSA) using the Multiple Linear Regression Method Fitria Rachmawati; Jejen Jaenudin; Novita Br Ginting; Panji Laksono
JURNAL TEKNIK INFORMATIKA Vol 17, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i1.28652

Abstract

Corona virus (COVID-19) is the reason behind the collapse of the National Assembly. The first is the Final Semester Assessment (FSA) , which is a component of the student's graduation. The aforementioned evaluation process is a crucial consideration for the teacher since it uses several intricate surveys and mark components. A prediction model is employed to assist teachers in providing suitable results for student learning. The method that is used is called the multiple linear regression. This multiple linear regression algorithm yields an accuracy level of approximately 92%. The analysis results using the method are used as a guide to understanding student’s index. This index is a rating that appears based on the Minimum Credit Count (MCC). Therefore, the goal of this study is to determine students' understanding of the FSA prediction value, which will be taken into consideration through the results of the MCC weights in the form of a range in the form of "Grade." Additionally, the research aims to determine the accuracy of the results from the model obtained using multiple linear regression algorithms in predicting students' FSA.
Mobile Application Development Analysis for Cafe Reservations and Delivery Order Anggy Trisnadoli; Rika Perdana Sari; Iqbal Setiawan
JURNAL TEKNIK INFORMATIKA Vol 16, No 2 (2023): JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v16i2.25561

Abstract

Owning a cafe is one of a business that is currently trending in Indonesia, especially in Pekanbaru. With a wide range of cafes in Indonesia, it is directly proportional to the competition among the owners of a cafe. With the rapid development of technology, each cafe owner innovates a delivery order feature to compete with their competitors. They believe it will be a channel for business marketing to be efficient, fast, and sophisticated by providing delivery order features. The delivery order feature provides in two ways; call center by telephone and through an Android-based delivery order application offered by motorcycle taxi online. However, the weakness of using delivery orders through a mobile application is that there is an additional charge due to service fees and expensive shipping costs, which are burdensome to the customers. Regarding this, not having enough space also becomes a primary problem. For that matter, developing an Android application can make the customers easier to order food and drink online. In addition, customers can make reservations and order food or drinks simultaneously, which minimizes customers from running out of space.
Ensemble Learning Development Based on Transfer Learning for Indonesian Traditional Food Detection Nurhayati Nurhayati; Zulfiandri Zulfiandri; Wilda Nurjannah; Irlan Muntasha
JURNAL TEKNIK INFORMATIKA Vol 17, No 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.35034

Abstract

Development of traditional food competes with other traditional foods now. They must compete with fast food and food from abroad. In 2013, the food and beverage sector were the second highest contributor to tourist expenditure after accommodation. This shows its very important role in the economy. That caused, we need a model that can predict traditional Indonesian foods and snacks.  We used ensemble learning. It had 2 transfer learning methods, namely VGG-19 and Xception. They will be combined to improve the performance of the existing model. The research result shown output. It has found that the ensemble learning model achieved accuracy of up to 97% on training data and 91% on testing data. It is hoped that this prediction model can help people recognize typical Indonesian food and increase interest in and preserve the food around them.
A Comparative Study of Students Graduation Analysis Using Classification Methods in Undergraduate Electrical Engineering Tidar University Damar Wicaksono; Sapto Nisworo; Imam Adi Nata
JURNAL TEKNIK INFORMATIKA Vol 17, No 1: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i1.32132

Abstract

This research aimed to classify achievement factors for electrical engineering students at Tidar University using K-Means and Agglomerative Clustering classification algorithms. The goal was to understand if any parameters influence high-achieving student performance. The Indonesian government and private sector for university students provide significant education funds. Student scholarships are awarded based primarily on GPA and entry path, overburdening staff and causing confusion during distribution to eligible recipients. A system was needed to accommodate additional eligible criteria. The researcher selected factors to identify engineering student performance, including school origin, entry path, tuition fees, and GPA. These inputs could determine graduation status. The results compared calculation methods based on collected data accuracy, processing times, and characterizing clustered data to determine the best classification method. Agglomerative Hierarchical Clustering performed better. Accuracy testing on 600 training data points yielded 73.94% for improved K-means and 90.42% for AHC. The Average processing time was 674.92 seconds for improved K-means and 554.35 seconds for AHC. Silhouette testing also characterized calculation methods, with improved K-means scoring best at 0.654 and AHC at 0.787 using two clusters.
Continuous Sign Language Recognition Using Combination of Two Stream 3DCNN and SubUNet Haryo Pramanto; Suharjito Suharjito
JURNAL TEKNIK INFORMATIKA Vol 16, No 2 (2023): JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v16i2.27030

Abstract

Research on sign language recognition using deep learning has been carried out by many researchers in the field of computer science but there are still obstacles in achieving the expected level of accuracy. Not a few researchers who want to do research for Continuous Sign Language Recognition but are trapped into research for Isolated Sign Language Recognition. The purpose of this study was to find the best method for performing Continuous Sign Language Recognition using Deep Learning. The 2014 RWTH-PHOENIX-Weather dataset was used in this study. The dataset was obtained from a literature study conducted to find datasets that are commonly used in Continuous Sign Language Recognition research. The dataset is used to develop the proposed method. The combination of 3DCNN, LSTM and CTC models is used to form part of the proposed method architecture. The collected dataset is also converted into an Optical Flow frame sequence to be used as Two Stream input along with the original RGB frame sequence. Word Error Rate on the prediction results is used to review the performance of the developed method. Through this research, the best achieved Word Error Rate is 94.1% using the C3D BLSTM CTC model with spatio stream input.
Enhancing Speech-to-Text and Translation Capabilities for Developing Arabic Learning Games: Integration of Whisper OpenAI Model and Google API Translate Dewi Khairani; Tabah Rosyadi; Arini Arini; Imam Luthfi Rahmatullah; Fauzan Farhan Antoro
JURNAL TEKNIK INFORMATIKA Vol 17, No 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.41240

Abstract

This study tackles language barriers in computer-mediated communication by developing an application that integrates OpenAI’s Whisper ASR model and Google Translate machine translation to enable real-time, continuous speech transcription and translation and the processing of video and audio files. The application was developed using the Experimental method, incorporating standards for testing and evaluation. The integration expanded language coverage to 133 languages and improved translation accuracy. Efficiency was enhanced through the use of greedy parameters and the Faster Whisper model. Usability evaluations, based on questionnaires, revealed that the application is efficient, effective, and user-friendly, though minor issues in user satisfaction were noted. Overall, the Speech Translate application shows potential in facilitating transcription and translation for video content, especially for language learners and individuals with disabilities. Additionally, this study introduces an Arabic learning game incorporating an Artificial Neural Network using the CNN algorithm. Focusing on the “Speaking” skill, the game applies to voice and image extraction techniques, achieving a high accuracy rate of 95.52%. This game offers an engaging and interactive method for learning Arabic, a language often considered challenging. The incorporation of Artificial Neural Network technology enhances the effectiveness of the learning game, providing users with a unique and innovative language learning experience. By combining voice and image extraction techniques, the game offers a comprehensive approach to enjoyably improving Arabic speaking skills.
Genetic Algorithm Optimization of Hybrid LSTM-AutoEncoder in Tourism Recommendation System Bayu Surya Dharma Sanjaya; Erwin Budi Setiawan
JURNAL TEKNIK INFORMATIKA Vol 17, No 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.39760

Abstract

The tourism industry has rapid growth and has become one of the world's leading economic industries in recent years due to advances in information technology, such as the internet and social media. However, the overwhelming amount of information often makes it difficult for travelers to decide on their preferred travel destination. To address these issues, this research proposes a tourism recommendation system that combines Content-Based Filtering and Hybrid LSTM-AE, which is optimized using Genetic Algorithm (GA). There is no research that has developed a recommendation system using a combination of these methods and optimized using GA. So that this research can contribute to providing personalized recommendations and higher accuracy. The dataset consists of 9,504 ratings collected from the Ministry of Tourism and Creative Economy, Twitter, and web sources. The system was able to achieve a rating prediction accuracy of 96.82% by applying SMOTE to handle data imbalance and implementing a GA approach to the Hybrid LSTM-AE model. Accuracy has increased by 18.7% from the baseline model without using SMOTE and optimization. These results underscore that a strong integration between natural language processing and genetically optimized deep learning provides more accurate recommendations.