cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 709 Documents
Experimental Evaluation of Thermohydraulic Performance of Tubular Solar Air Heater Yousif Fateh Midhat; Issam Mohammed Ali Aljubury
International Journal of Renewable Energy Development Vol 12, No 1 (2023): January 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.45312

Abstract

The thermohydraulic performance of a new design solar air heater (SAH) design was examined experimentally in this paper as a trial to improve the flat-plate SAH’s efficiency. A flat-plate solar air heater (FPSAH) and a jacketed tubular solar air heater (JTSAH) having similar dimensions were constructed to compare their thermal performance efficiencies. A band of Aluminum jacketed tubes   were arranged side by side in parallel to the airflow direction to form the absorber of a jacketed tubular solar air heater (JTSAH). The experiments were accomplished at three mass flow rates (MFR)s: 0.011 kg/s. 0.033 kg/s, and 0.055 kg/s. Results revealed that the maximum temperature difference was obtained from JTSAH at 38°C in comparison to 32°C from the FPSAH at MFR of 0.011 kg/s. The thermal losses from the upper glass cover of the JTSAH were less than the same losses at the FPSAH due to the reduced absorber and glass temperatures of the JTSAH. The gained power  was higher at the JTSAH than the FPSAH. At the JTSAH, at 0.055 kg/s MFR, the maximum average thermal efficiency obtained was 81%, and the maximum average thermos-hydraulic efficiency obtained was 75.61 %. It is noted that increasing the MFR increases the thermal efficiency, also, its optimum value rises the thermos-hydraulic efficiency to a specific optimum point. The pressure drop increases with the MFR and JTSAH compared to the FPSAH
Performance evaluation of the novel 3D-printed aquatic plant-microbial fuel cell assembly with Eichhornia crassipes Mel Patrick D. Malinis; Herna Jones F Velasco; Kristopher Ray Pamintuan
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.53222

Abstract

Plant-Microbial Fuel Cells (PMFCs) are a sustainable derivative of fuel cells that capitalizes on plant rhizodeposition to generate bioelectricity. In this study, the performance of the novel 3D-printed aquatic PMFC assembly with Eichhornia crassipes as the model plant was investigated. The design made use of 1.75 mm Protopasta Conductive Polylactic Acid (PLA) for the electrodes and 1.75 mm CCTREE Polyethylene Terephthalate Glycol (PETG) filaments for the separator. Three systems were prepared with three replicates each: PMFCs with the original design dimensions (System A), PMFCs with cathode-limited surface area variations (System B), and PMFCs with anode-limited surface area variations (System C). The maximum power density obtained by design was 82.54 µW/m2, while the average for each system is 26.99 µW/m2, 36.24 µW/m2, and 6.81 µW/m2, respectively. The effect of variations on electrode surface area ratio was also examined, and the results suggest that the design benefits from increasing the cathode surface area up to a cathode-anode surface area ratio of 2:1. This suggests that the cathode is the crucial component for this design due to it facilitating the rate-limiting step. Plant health was also found to be a contributing factor to PMFC performance, thereby suggesting that PMFCs are an interplay of several factors not limited to electrode surface area alone. The performance of the novel PMFC did not achieve those obtained from existing studies. Nevertheless, the result of this study indicates that 3D-printing technology is a possible retrofit for PMFC technology and can be utilized for scale-up and power amplification.
Optimal Scheduling of Solar-Wind-Thermal Integrated System Using α-Constrained Simplex Method Sunimerjit Kaur; Yadwinder Singh Brar; Jaspreet Singh Dhillon
International Journal of Renewable Energy Development Vol 10, No 1 (2021): February 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.32245

Abstract

In this paper, multi-objective economic-environmental solar-wind-thermal power scheduling model was developed and it was optimized for five test systems. First test system was based upon a purely thermal power generating system and its problem was formulated to satisfy three conflicting objectives: (i) fuel cost, (ii)  emission, and (iii)  emission. The second, third and fourth test systems were comprised of optimal scheduling of integrated solar-thermal, wind-thermal and solar-wind-thermal power systems, respectively. Uncertainty costs were also considered in the renewable power based systems. These four test systems were examined for five power demands i.e. 200 MW, 225 MW, 250 MW, 275 MW, & 300 MW. Fifth test system was also deployed upon a renewable-thermal power scheduling. The effects of variation in number of thermal generators on fuel cost and  emission were perceived, for a power demand of 400 MW. The values of fuel cost (4067.98 Rs/h) and  emission (2,441.05 kg/h) reduced to 3,232.94 Rs/h and 1,939.30 kg/h, respectively, when number of thermal generators were reduced from four to two. The -constrained simplex method (ACSM) was used for simulation and the results were compared with simplex method (SM). The results clearly depict the dominance of ACSM over SM in almost all the fields.
Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application Hrushikesh Bhujangrao Kulkarni
International Journal of Renewable Energy Development Vol 5, No 1 (2016): February 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.1.49-55

Abstract

Concentrating collectors absorbs solar energy and convert it into heat for generating hot water, steam at required temperature, which can be further used for solar thermal applications. The developing countries like India where solar energy is abundantly available; there is need to develop technology for harnessing solar energy for power production, but the main problem associated with concentrating solar power technology is the high cost of installation and low output efficiency. To solve this problem, a prototype cylindrical parabolic solar collector having aperture area of 1.89 m2 is designed and developed using low cost highly reflecting and absorbing material to reduce initial cost of project and improve thermal efficiency. ASHRAE Standard 93, 1986 was used to evaluate the thermal performance and it was observed that this system can generate hot water at an average temperature of 500C per day with an average efficiency of 49% which is considerable higher than flat plate solar collectors. Hot water produced by this system can be useful for domestic, agricultural, industrial process heat applications.Article History: Received Sept 19, 2015; Received in revised form Dec 23, 2015; Accepted February 2, 2016; Available online How to Cite This Article: Bhujangrao, K.H. (2016). Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application. International Journal of Renewable Energy Development, 5(1), 49-55 http://dx.doi.org/10.14710/ijred.5.1.49-55 
Experimental Investigation of Bladeless Power Generator from Wind-induced Vibration La Ode Ahmad Barata; Kiwata Takahiro; Toshiyuki Ueno; Samhuddin Samhuddin; La Hasanudin
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.43888

Abstract

The power harvester unit from flow-induced vibration (FIV) was designed to harness energy from low flow velocity based on the magnetostrictive effect on the galfenol (Fe – Ga alloy) strip induced by the oscillating bluff body. This study aimed to investigate the cross-section variation’s effect on the FIV characteristics and the magnetostrictive material’s performance for the bladeless power generator. The generator model’s vibration characteristics and performance tests were conducted in the wind tunnel test using the wind-receiving unit (WRU) variation. The results showed that the resonance reduced-velocity (Vr) were around 3.7 and 4.0 for rectangular and circular cylinders, respectively. Furthermore, the effect of rectangular depth variation on the power generation output is linear to the test models’ displacement rate and vibration frequency. The harvester’s maximum power generation was 5.25 mW, achieved using the rectangular prism with depth D = 0.4H. The power coefficient was also evaluated for different wind-receiving models. The harvester model lit up 54 LED lamps in the wind tunnel test. The voltage output is sufficient to provide electric power resources for an IoT system, sensor, and wearable or wireless devices. The harvester model successfully generated a voltage signal under the initial field test with an ambient wind velocity of 0.9 – 2.71 m/s. Therefore, this study recommends the development of bladeless power generators in the future.
Utilization of the spent catalyst as a raw material for rechargeable battery production: The effect of leaching time, type, and concentration of organic acids Tabita Kristina Mora Ayu Panggabean; Ratna Frida Susanti; Widi Astuti; Himawan Tri Bayu Murti Petrus; Anastasia Prima Kristijarti; Kevin Cleary Wanta
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.51353

Abstract

This study examines the potential use of the spent catalyst as a raw material for rechargeable batteries. The spent catalyst Ni/γ-Al2O3 still contains relatively high amounts of nickel. This indicates the potential use of the spent catalyst to be leached and purified for synthesizing nickel-based compounds so that it can be applied to rechargeable battery cathodes. In this study, the spent catalyst leaching process employed four types of organic acids: citric acid, lactic acid, oxalic acid, and acetic acid. The spent catalyst was leached under atmospheric conditions and room temperature. Organic acid concentrations were also varied at 0.1, 0.5, 1, and 2 M. The leaching process took place for 240 minutes, where sampling was conducted periodically at 30, 60, 120, 180, and 240 minutes. Experimental results showed that Ni (II) and Al (III) ions were successfully leached to the maximum when using 2M citric acids at a leaching time of 240 minutes. The conditions succeeded in leaching Ni (II) and Al (III) ions of 357.8 and 1,975.4 ppm, respectively. Organic acid, notably citric acid, has excellent potential for further development. Citric acid, as a solvent, has the ability to leach metal ions with high recovery. In addition, this acid is categorized as an eco-friendly and green solvent compared to inorganic acid. Thus, the leaching process can take place without harming the environment.
Computational prediction of green fuels from crude palm oil in fluid catalytic cracking riser Agus Prasetyo Nuryadi; Widodo Wahyu Purwanto; Windi Susmayanti; Himawan Sutriyanto; Bralin Dwiratna; Achmad Maswan
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.54032

Abstract

Fluid catalytic cracking could convert crude palm oil into valuable green fuels to substitute fossil fuels. This study aimed to predict the phenomenon and green fuels yield in the industrial fluid catalytic cracking riser using computational fluid dynamics. A three-dimensional transient simulation using the Eulerian-Lagrangian with the multiphase particle-in-cell is to investigate reactive gas-particle hydrodynamics and the four-lump kinetic network model with the rare earth-Y catalyst for crude palm oil cracking behaviors. The study results show that the fluid and catalyst velocity profile increase in the middle of the riser reactor because the cracking reaction process that produces OLP and Gas products has a lighter molecular weight. The endothermic reaction causes the temperature profile to decrease because the heat of the reaction comes from the catalyst. This analysis shows that the simulation accurately predicts green fuel products from crude palm oil. As a result, the crude palm oil conversion, organic liquid product yield, and Gas yield correspond to 70 wt%, 28.8 wt%, and 27.5 wt%, respectively. Compared to the experimental study, the computational prediction of yield products showed good agreement and determined the optimal riser dimension. The methodology and results are guidelines for optimizing the FCC riser process using CPO.
A Visual Support of Standard Procedures for Solar Radiation Quality Control Omaima El Alani; Hicham Ghennioui; Abdellatif Ghennioui; Yves-Marie Saint-Drenan; Philippe Blanc; Natalie Hanrieder; Fatima-Ezzahra Dahr
International Journal of Renewable Energy Development Vol 10, No 3 (2021): August 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.34806

Abstract

Solar irradiance data from high-quality ground-based measurements are primordial for different solar energy applications. In order to achieve the required accuracy, quality control procedures are of great benefit. A variety of approaches   have been proposed. In this sense, some approaches propose a visual representation of the routine, while others only provide a time series of binary flag values, and do not propose any specific visualization of the flagged data as opposed to non-flagged ones. In this regard, the present paper puts forward a complete routine including several quality control procedures for solar irradiance measurements by providing visual support for these different approaches. The visual tool in question was validated using five years research data with 10 minutes resolution of the global, diffuse and direct components of solar irradiation collected from three ground-based weather stations in Morocco. This visual tool puts forth a more precise idea of the measurement quality by detecting various errors, such as time shifts, outliers identification; either with one or two components, or consistency tests between the three components of solar radiation when available. The proposed tool can be regarded as a means of improving the detection rate of abnormal data as a first step in diagnosing the prominent causes of error.
The Performance of A Diesel Engine Fueled With Diesel Oil, Biodiesel and Preheated Coconut Oil Tuan Anh Hoang; Vang Van Le
International Journal of Renewable Energy Development Vol 6, No 1 (2017): February 2017
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.6.1.1-7

Abstract

Fossil fuel crisis and depletion, environmental pollution and ever-increase in vehicle and transportation means have renewed the scientist’s interest in the world in order to look for potential alternative fuels, which are attractive such as biodiesel, bioethanol, DME and vegetable oils. Inedible vegetable oils such as coconut oil, Jatropha oil, linseed oil or animal fat are full of potential for using directly or manufacturing biodiesel. This work is carried out in order to study the four stroke diesel engine D240 performance characteristics fueled with preheated pure coconut oil (PCO), Jatropha oil methyl ester (JOME) and compare with diesel oil (DO). The test diesel engine performance such as power (Ne), torque (Me), specific fuel consumption (ge) and thermal efficiency (ηe) is determined, calculated and evaluated while using JOME, preheated PCO and compared to DO. The results show that, power (Ne), torque (Me) and thermal efficiency (ηe) while engine is fueled with JOME and PCO are lower, otherwise specific fuel consumption (ge) is higher than those of diesel fuel, the test engine performance are gained the best for JOME and PCO100.Article History: Received Dec 9, 2016; Received in revised form January 28, 2017; Accepted February 4, 2017; Available onlineHow to Cite This Article: Hoang, T.A and Le,V. V. (2017). The Performance of A Diesel Engine Fueled With Diesel Oil, Biodiesel and Preheated Coconut Oil. International Journal of Renewable Energy Development, 6(1), 1-7.http://dx.doi.org/10.14710/ijred.6.1.1-7
Assessing the Current Status of Renewable Energies and Their Limitations in Iran Somayeh Pahlavan; Mehdi Jahangiri; Akbar Alidadi Shamsabadi; Alireza Baharizadeh
International Journal of Renewable Energy Development Vol 9, No 1 (2020): February 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.1.97-105

Abstract

Innovative and more sustainable methods of supplying energy needs in the world have led to a change in the dependency model for fossil fuels, including more integrated planning and adoption of new and motivating models regarding the use of renewable energy. Today, with the reduction of fossil fuel consumption in the world, the use of renewable energy has gained an important role in the global energy mix, but according to studies, the share of renewable energy in Iran’s energy mix is very small. Therefore, the present paper attempts to present all potentialities for obtaining clean energy in Iran by assessing the current state of renewable energies. The fact that, in the present time, the real value of energy carriers is not appreciated properly in Iran, on the one hand, and the lack of willingness to invest in these energies in the private sector, which may have been less protected, on the other hand, has caused the consumption level of fossil fuels to remain unchanged, which may have some disadvantages, such as environmental damage, in addition to their utilization. The authors of the paper are of the opinion that, on the one hand, by finding solutions for bank investment problems, easing restrictive laws, providing bank with guarantees by investors, as well as modifying parts of the guaranteed electricity purchase contract for accepting foreign banks to provide loans and obtain financing, and on the other hand, by facilitating the process of obtaining land permits and connecting to these power plants, Iran is not far from reaching a reasonable rank in the world.©2020. CBIORE-IJRED. All rights reserved

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue