cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 709 Documents
Optimisation and Management of Virtual Power Plants Energy Mix Trading Model Zahid Ullah; Nayyar Hussain Mirjat; Muhammad Baseer
International Journal of Renewable Energy Development Vol 11, No 1 (2022): February 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.39295

Abstract

. In this study, a robust optimisation method (ROM) is proposed with aim to achieve optimal scheduling of virtual power plants (VPPs) in the day-ahead electricity markets where electricity prices are highly uncertain. Our VPP is a collection of various distributed energy resources (DERs), flexible loads, and energy storage systems that are coordinated and operated as a single entity. In this study, an offer and bid-based energy trading mechanism is proposed where participating members in the VPP setting can sell or buy to/from the day-ahead electricity market to maximise social welfare (SW). SW is defined as the maximisation of end-users benefits and minimisation of energy costs. The optimisation problem is solved as a mixed-integer linear programming model taking the informed decisions at various levels of uncertainty of the market prices. The benefits of the proposed approach are consistency in solution accuracy and traceability due to less computational burden and this would be beneficial for the VPP operators. The robustness of the proposed mathematical model and method is confirmed in a case study approach using a distribution system with 18-buses. Simulation results illustrate that in the highest robustness scenario, profit is reduced marginally, however, the VPP showed robustness towards the day-ahead market (DAM) price uncertainty
Synthesis A Flexible Conductive Film of Poly 3,4-Ethylenedioxythiophene Polystyrene Sulfonate (PEDOT: PSS) Using Spray Pyrolysis Method Fadhil Muhammad Tarmidzi; Setia Budi Sasongko
International Journal of Renewable Energy Development Vol 7, No 2 (2018): July 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.2.159-162

Abstract

Popularity of conducting polymers are become widely known and researches for practical application also has been done. In order to developed a continuous process for industrial scale,  we have proposed a spray pyrolysis method to synthesis a flexible conductive film of Poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) (PEDOT:PSS) on poly(ethylene terephthalate) (PET) and annealed at different temperatures and spray distances. The optimum condition that resulting a best morphology was anneal at 90oC and 20 cm distance with electrical conductivity 4.5 S/cm. It was found that annealing at temperature higher than 90oC will resulting a stress to a film and formed crack due to a different thermal expansion, while at the distance higher than 20 cm resulting a loss of PEDOT:PSS droplets. IR spectra shows that there is no any sign of PEDOT:PSS degradation even at 110oC. SEM analysis also show that the thickness is well distributed and there is no any sign of crack formedArticle History: Received February 24th 2017; Received in revised form May 16th 2018; Accepted May 20th 2018; Available onlineHow to Cite This Article: Tarmidzi, F.M. and Sasongko, S.B. (2018) Synthesis A Flexible Conductive Film of Poly 3,4-Ethylenedioxythiophene Polystyrene Sulfonate (PEDOT:PSS) Using Spray Pyrolysis Method. Int. Journal of Renewable Energy Development, 7(2), 159-162.https://doi.org/10.14710/ijred.7.2.159-162
Investigation of Electrochemical, Thermal and Electrical Performance of 3D Lithium-Ion Battery Module in a High -Temperature Environment Snigdha Sharma; Amrish Kumar Panwar; Madan Mohan Tripathi
International Journal of Renewable Energy Development Vol 9, No 2 (2020): July 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.2.151-157

Abstract

In the present time, the rechargeable lithium-ion battery is being commercialized to meet the sustained market’s demands. To design a more reliable, safe, and efficient Li-ion battery, a 3-D simulation study has been presented in this paper. In this study, a lithium-ion coin-cell is proposed which has LiFePO4 as a positive electrode with a thickness of 1.76 µm, carbon as a negative electrode with a thickness of 2.50 µm and Celgard 2400 polypropylene sheet as a separator between the electrodes with a thickness of 2 µm. The proposed Li-ion battery has been designed, analyzed, and optimized with the help of Multiphysics software. The simulation study has been performed to analyze the electrochemical properties such as cyclic voltammetry (CV) and impedance spectroscopy (EIS). Moreover, the electrical and thermal properties at the microscopic level are investigated and optimized in terms of surface potential distribution, the concentration of electrolyte, open circuit, and surface temperature with respect to time. It has been noticed that the peak voltage, 3.45 V is observed as the temperature distribution on the surface varies from 0 OC to 80 OC at a microscopic scale with different C-rates. The analysis of simulation results indicates a smoother electrode surface with uniform electrical and thermal properties distribution resulting in improved reliability of the battery. The performed simulation and optimization are helpful to achieve control over battery performance and safe usage without any degradation of the environment.
Tidal Current Energy Resources Assessment in the Patinti Strait, Indonesia Franto Novico; Evi Hadrijantie Sudjono; Andi Egon; David Menier; Manoj Methew; Munawir Bintang Pratama
International Journal of Renewable Energy Development Vol 10, No 3 (2021): August 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.35003

Abstract

Indonesia is currently intensively developing its renewable energy resource and targets at least 23% by 2025. As an archipelago country, Indonesia has the potential to benefit from its abundant renewable energy resources from its offshore regions. However, the short tidal range of mixed semi-diurnal and the suitable tidal turbine capacity may hinder marine renewable energy development in Indonesian waters. This paper presents higher-order hydrodynamic numerical models to provide spatial information for tidal current resource assessment of the Patinti Strait. The present study applied the hydrographic and oceanographic method to produce input of the numerical model. Based on the selected simulation analysis, the highest current speed could be identified around Sabatang and Saleh Kecil Island with up to 2.5 m/s in P1 and 1.7 m/s in P4. Besides, the operational hours for the two observation points are 69% and 74.5%, respectively. The results indicate that this location is of prime interest for tidal turbine implementation as an energy source, for medium capacity (300 kW) and high capacity (1 MW).
Outstanding Photo-bioelectrochemical Cell by Integrating TiO2 and Chlorophyll as Photo-bioanode for Sustainable Energy Generation Marcelinus Christwardana; Athanasia Amanda Septevani; Linda Aliffia Yoshi
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.41722

Abstract

Photosynthesis is a technique for converting light energy into chemical energy that is both efficient and sustainable. Chlorophyll in energy-transducing photosynthetic organisms is unique because of their distinctive structure and composition. In photo-bioelectrochemical research, the chlorophyll's quantum trapping efficiency is attractive. Chlorophyll from Spirulina platensis is demonstrated to communicate directly with TiO2-modified Indium Thin Oxide (ITO) to generate electricity without the use of any mediator. TiO2-modified ITO with a chlorophyll concentration of 100 % generated the greatest power density and photocurrent of approximately 178.15 mW/m2 and 596.92 mA/m2 from water oxidation under light among all the other materials. While the sensitivity with light was 0.885 mA/m2.lux, and Jmax value was 1085 mA/m2. Furthermore, the power and photocurrent density as a function of chlorophyll content are studied. The polarizability and Van der Waals interaction of TiO2 and chlorophyll are crucial in enhancing electron transport in photo-bioelectrochemical systems. As a result, this anode structure has the potential to be improved and used to generate even more energy.
Effects of Injection Strategies on Mixture Formation and Combustion in a Spark-Ignition Engine Fueled with Syngas-Biogas-Hydrogen Thanh Xuan Nguyen-Thi; Thi Minh Tu Bui
International Journal of Renewable Energy Development Vol 12, No 1 (2023): January 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.49368

Abstract

The paper presents the effects of blend injection and dual injection strategies on mixture formation and combustion of syngas-biogas-hydrogen fueling engine working in the solar-biomass hybrid renewable energy system. The research was performed by simulation method on a retrofitted Honda GX200 spark-ignition engine. The results show that at the end of the compression process, in the case of blend injection of 50% syngas-50% biogas, the fuel-rich zone was positioned on the top of the combustion chamber, whereas in the case of dual injection, this zone was found on the top of the piston. In the case of 50% syngas-50% hydrogen supplied, at the end of the compression process, the fuel-rich area observed on the top of the piston with slightly deflected towards the inlet port in both cases of blend and dual injection. When shifting from blend injection mode to dual injection mode, in the case of 50% syngas-50% biogas fueling engine, the mean temperature of the exhaust gas decreased from 1208 K to 1161 K and the NOx concentration decreased from 1919 ppm to 1288 ppm. In the case of a 50% syngas-50% hydrogen fueling engine, the mean exhaust gas temperature decreases from 1283 K to 1187 K leading to a decrease in NOx concentration from 3268 ppm to 2231 ppm. The dual injection has the advantage of lower NOx emission, whereas the blend injection has the advantage of higher efficiency
Modeling and Analysis of Solar Photovoltaic Assisted Electrolyzer-Polymer Electrolyte Membrane Fuel Cell For Running a Hospital in Remote Area in Kolkata, India Kamaljyoti Talukdar
International Journal of Renewable Energy Development Vol 6, No 2 (2017): July 2017
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.6.2.181-191

Abstract

The present work consists of the modeling and analysis of solar photovoltaic panels integrated with electrolyzer bank and Polymer Electrolyte Membrane (PEM) fuel cell stacks for running different appliances of a hospital located in Kolkata for different climatic conditions. Electric power is generated by an array of solar photovoltaic modules. Excess energy after meeting the requirements of the hospital during peak sunshine hours is supplied to an electrolyzer bank to generate hydrogen gas, which is consumed by the PEM fuel cell stack to support the power requirement during the energy deficit hours. The study reveals that 875 solar photovoltaic modules in parallel each having 2 modules in series of Central Electronics Limited Make PM 150 with a 178.537 kW electrolyzer and 27 PEM fuel cell stacks, each of 382.372 W, can support the energy requirement of a 200 lights (100 W each), 4 pumps (2 kW each), 120 fans(65 W each) and 5 refrigerators (2 kW each)system operated for 16 hours, 2 hours,15 hours and 24 hours respectively. 123 solar photovoltaic modules in parallel each having 2 modules in series of Central Electronics Limited Make PM 150 is needed to run the gas compressor for storing hydrogen in the cylinder during sunshine hours. Article History: Received Feb 5th 2017; Received in revised form June 2nd 2017; Accepted June 28th 2017; Available onlineHow to Cite This Article: Talukdar, K. (2017). Modeling and Analysis of Solar Photovoltaic Assisted Electrolyzer-Polymer Electrolyte Membrane Fuel Cell For Running a Hospital in Remote Area in Kolkata,India. International Journal of Renewable Energy Development, 6(2), 181-191.https://dx.doi.org/10.14710/ijred.6.2.181-191
Performance Evaluation of Various Photovoltaic Module Technologies at Nawabshah Pakistan Abdul Rehman Jatoi; Saleem Raza Samo; Abdul Qayoom Jakhrani
International Journal of Renewable Energy Development Vol 10, No 1 (2021): February 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.32352

Abstract

The purpose of this study was to evaluate the influence of module temperature on the efficiency of polycrystalline (p-Si), monocrystalline (m-Si), amorphous (a-Si) and thin film photovoltaic modules at outdoor environment of Nawabshah city Pakistan. The experimental setup was made and installed over the top roof of departmental building. Weather conditions, such as global solar radiation, ambient temperature, wind speed and relative humidity, power output and temperature of all selected four types of module technologies were measured at the site by logging data. Then, the logged data was normalized because of different rated power of photovoltaic modules for comparison purpose. Results revealed that less temperature impact was noted from thin film module and thus it gave more normalized power with 45.6% among other examined modules. On the basis of overall efficiency, p-Si, m-Si, a-Si and thin film modules gave 92.4%, 93.7%, 94.4% and 95.4% yearly average normalized efficiencies respectively. It was found that temperature has more impact on the efficiency of other examined modules compared to thin film modules. Thus, it is concluded from the study that thin film module is better in outdoor environment of Nawabshah
A New Method for Horizontal Axis Wind Turbine (HAWT) Blade Optimization Mohammadreza Mohammadi; Alireza Mohammadi; Said Farahat
International Journal of Renewable Energy Development Vol 5, No 1 (2016): February 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.1.1-8

Abstract

Iran has a great potential for wind energy. This paper introduces optimization of 7 wind turbine blades for small and medium scales in a determined wind condition of Zabol site, Iran, where the average wind speed is considered 7 m /s. Considered wind turbines are 3 bladed and radius of 7 case study turbine blades are 4.5 m, 6.5 m, 8 m, 9 m, 10 m, 15.5 m and 20 m. As the first step, an initial design is performed using one airfoil (NACA 63-215) across the blade. In the next step, every blade is divided into three sections, while the 20 % of first part of the blade is considered as root, the 5% of last the part is considered as tip and the rest of the blade as mid part. Providing necessary input data, suitable airfoils for wind turbines including 43 airfoils are extracted and their experimental data are entered in optimization process. Three variables in this optimization problem would be airfoil type, attack angle and chord, where the objective function is maximum output torque. A MATLAB code was written for design and optimization of the blade, which was validated with a previous experimental work. In addition, a comparison was made to show the effect of optimization with two variables (airfoil type and attack angle) versus optimization with three variables (airfoil type, attack angle and chord) on output torque increase. Results of this research shows a dramatic increase in comparison to initial designed blade with one airfoil where two variable optimization causes 7.7% to 22.27 % enhancement and three variable optimization causes 17.91% up to 24.48% rise in output torque .Article History: Received Oct 15, 2015; Received in revised form January 2, 2016; Accepted January 14, 2016; Available online How to Cite This Article: Mohammadi, M., Mohammadi, A. and Farahat, S. (2016) A New Method for Horizontal Axis Wind Turbine (HAWT) Blade Optimization. Int. Journal of Renewable Energy Development, 5(1),1-8. http://dx.doi.org/10.14710/ijred.5.1.1-8
The Effect of Trailing Edge Profile Modifications to Fluid-Structure Interactions of a Vertical Axis Tidal Turbine Blade Nu Rhahida Arini; Stephen R Turnock; Mingyi Tan
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.44669

Abstract

Renewable energy has become an essential energy alternative since the continual depletion of non-renewable energy resources and increasing environmental issues. Tidal energy is a promising future renewable resource which can be extracted using a vertical axis tidal turbine. Since it was proposed, a tidal turbine performance requires improvements which can be obtained by a blade’s trailing edge modification. Modifying the blade’s trailing edge profile is confirmed to be one way to improve a turbine’s work. However, the influence of a trailing edge modifications on a vertical axis tidal turbine blade’s interaction with fluid has not been fully understood, thus the fluid induced vibration as the fluid behaviour working on a vertical axis tidal turbine blade has not been completely discovered. In this paper, 2D fluid-structure interactions of modified vertical axis tidal turbine blades are examined and modelled using OpenFOAM. Three different modified blade profiles are proposed: sharp, rounded, and blunt. The modified profiles are employed to an original NACA 0012 blade and their influences on a vertical axis tidal turbine blade interaction are observed. The result discovers the fluid behaviour and fluid-induced vibrations at all positions (represented by 12 positions) over one turbine’s cycle. The results demonstrate the frequency domain blade velocities and time domain blade displacements for all modified blades. The fluid behaviour around the blade is confirmed by pressure distribution plots over the blade’s upper and lower surfaces. The results show that the blunt profile provides less frequent vibrations due to a reducing vorticity in the downstream fluid regime. However, the vibration amplitude that occurs on the blunt blade is higher than those of rounded and sharp profiles. Based on this research, the blunt trailing edge profile appears to be more favourable to be applied and used for vertical axis tidal turbine blades.

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue