cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 709 Documents
Prediction of the output power of photovoltaic module using artificial neural networks model with optimizing the neurons number Abdulrahman Th. Mohammad; Hasanen M. Hussen; Hussein J. Akeiber
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.49972

Abstract

Artificial neural networks (ANNs) is an adaptive system that has the ability to predict the relationship between the input and output parameters without defining the physical and operation conditions. In this study, some queries about using ANN methodology are simply clarified especially about the neurons number and their relationship with input and output parameters. In addition, two ANN models are developed using MATLAB code to predict the power production of a polycrystalline PV module in the real weather conditions of Iraq. The ANN models are then used to optimize the neurons number in the hidden layers. The capability of ANN models has been tested under the impact of several weather and operational parameters. In this regard, six variables are used as input parameters including ambient temperature, solar irradiance and wind speed (the weather conditions), and module temperature, short circuit current and open circuit voltage (the characteristics of PV module). According to the performance analysis of ANN models, the optimal neurons number is 15 neurons in single hidden layer with minimum Root Mean Squared Error (RMSE) of 2.76% and 10 neurons in double hidden layers with RMSE of 1.97%.  Accordingly, it can be concluded that the double hidden layers introduce a higher accuracy than the single hidden layer. Moreover, the ANN model has proven its accuracy in predicting the current and voltage of PV module. 
Implications of Charcoal Briquette Produced by Local Communities on Livelihoods and Environment in Nairobi- Kenya M. Njenga; A. Yonemitsu; N. Karanja; M. Iiyama; J. Kithinji; M. Dubbeling; C. Sundberg; R. Jamnadass
International Journal of Renewable Energy Development Vol 2, No 1 (2013): February 2013
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2.1.19-29

Abstract

The residents of Nairobi, Kenya, use 700 tonnes of charcoal per day, producing about88 tonnes of charcoal dust that is found in most of the charcoal retailing stalls that is disposed of inwater drainage systems or in black garbage heaps. The high costs of cooking fuel results in poorhouseholds using unhealthy materials such as plastic waste. Further, poor households are opting tocook foods that take a short time to prepare irrespective of their nutritional value. This articlepresents experiences with community self-help groups producing charcoal fuel briquettes fromcharcoal dust in poorer nieghbourhoods of Nairobi for home use and sale. Households thatproduced charcoal fuel briquettes for own use and those that bought them saved 70% and 30% ofmoney spent on cooking energy respectively. The charcoal fuel briquettes have been found to beenvironmentally beneficial since they produce less smoke and increase total cooking energy bymore than 15%, thereby saving an equivalent volume of trees that would be cut down for charcoal.Charcoal briquette production is a viable opportunity for good quality and affordable cooking fuel.Bioenergy and waste management initiatives should promote recovery of organic by-products forcharcoal briquette production.
Energy Analysis and Remixing Effect of Thermal Coupling Petlyuk Column for Natural Gas Liquid (NGL) Fractionation Train Rohani Mohd Zin; Mohd Ammar Abidin; Munawar Zaman Shahruddin
International Journal of Renewable Energy Development Vol 10, No 3 (2021): August 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.33094

Abstract

In this work, a non-conventional distillation sequence with thermal coupling (Petlyuk Column) was presented as a technique to perform the separation of the NGL consist of ethane, propane, butane or other higher alkanes. The improvements were investigated through the energy analysis and remixing effect. From the result obtained, it was found that the Petlyuk arrangement consumes less amount of energy and able to reduce the remixing effects as compared to the conventional column sequencing. The Petlyuk arrangement saved about 44.49% and 12.83% in terms of cooling and heating duty, respectively. The overall annual energy saving shown by this arrangement is 39.22%. This arrangement proved to be able to prevent the remixing effect occurrence that contributes to thermal and separation inefficiency. The desired separation efficiency also obtained by this arrangement as all the product specifications are met. The ability in avoiding remixing effect by the Petlyuk column permits a significant reduction in CO2 emission with an average of 29.43 % of each equipment involved. Hence, it can be concluded that the Petlyuk arrangement model is a better alternative to be implemented in the NGL fractionation train.
Electricity from Wind for Off-Grid Applications in Bangladesh: A Techno-Economic Assessment Md. Mustafizur Rahman; Md Abdullah Hil Baky; A.K.M. Sadrul Islam
International Journal of Renewable Energy Development Vol 6, No 1 (2017): February 2017
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.6.1.55-64

Abstract

Global GHG (greenhouse gas) emissions are increasing substantially and electricity sector is one of the key contributors to the world’s total GHG emissions. GHG emissions cause ozone layer depletion and global warming. Different policy regulation agencies are adopting regulations to reduce GHG emissions in various sectors. People already have started power generation from cleaner sources. Renewable energy sources can provide cleaner electricity. Bangladesh is a densely populated country and most of the country’s electricity is produced from natural gas and coal. The Bangladesh government has set a goal to utilize renewable energy for the production of 10% of its electricity by the year 2020. Bangladesh has a lot of isolated coastal areas which are not connected to the national grid which can be electrified by using abundant wind energy. In this study a techno-economic analysis has been conducted for an off-grid island of Bangladesh. The analysis was conducted by developing a data intensive model that calculates the generation cost of electricity from wind energy. The model also estimates the capital cost of the system. The model shows that electricity can be produced from wind energy at a cost of $0.57/kWh. The system’s capital cost was calculated to be $63,550.16.Article History: Received October 15th 2016; Received in revised form January 26th 2017; Accepted February 4th 2017; Available onlineHow to Cite This Article: Rahman, M.M., Baky, M.A.H, and Islam, A.K.M.S. (2017) Electricity from Wind for Off-Grid Applications in Bangladesh: A Techno-Economic Assessment. International Journal of Renewable Energy Develeopment, 6(1), 55-64.http://dx.doi.org/10.14710/ijred.6.1.55-64
Experimental Studies of Interaction Forces Affect the Position of Vertical Plates on Oscillating Heave Plates with Cylindrical Bodies in Regular Waves Eko Sasmito Hadi; Muhammad Iqbal; Ari Wibawa; Ojo Kurdi; Karnoto Karnoto
International Journal of Renewable Energy Development Vol 9, No 1 (2020): February 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.1.77-84

Abstract

This paper discusses an experimental study of a wave energy converter (WEC) without using reaction from the seabed. The WEC uses buoys and heave plates, which can react to their self-reacting. The interaction force between heave plates and buoys can absorb energy from ocean waves better. The heave plate model affects the output of energy produced. It is presented in this study with variations in the position of upright plates. The research aims to measure the influence of the place of the addition of vertical plates into heave plates on the WEC on the hydrodynamic performance (coefficient of mass increase, drag coefficient, and KC value) and the interaction of the force it produces with the buoy on regular waves. The conclusion is the vertical plate position makes the coefficient of mass added Ca increase with an increasing amount of KC, and an almost linear relationship was observed between them. As the frequency increases, the value of C increases slightly, but it is not clear. Thus, the oscillating frequency has little effect on the mass coefficient of added heave plates with vertical plates. Thus, the change in the vertical plate position has only a powerful effect on KC < 0.75. ©2020. CBIORE-IJRED. All rights reserved
Performance and economic analysis of a reversed circular flow jet impingement bifacial PVT solar collector Muhammad Amir Aziat Bin Ishak; Adnan Ibrahim; Kamarruzaman Sopian; Mohd Faizal Fauzan; Aqil Afham Rahmat; Nurul Jannah Yusaidi
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.54348

Abstract

As the world shifts towards a more sustainable future, solar energy has emerged as a preeminent and economically feasible alternative to traditional energy sources, gaining widespread adoption. This study presents a reversed circular flow jet impingement (RCFJI) which aims to improve the performance of a bifacial PVT collector. An indoor experiment using a solar simulator to assess the energy, exergy, and economic efficiency of a RCFJI bifacial PVT collector. The study was carried out using a solar irradiance ranging from 500-900W/m2 and a mass flow rate between 0.01-0.14 kg/s. Energy performance-wise, the highest photovoltaic efficiency achieved was 11.38% at solar irradiance of 500 W/m2, while the highest thermal efficiency achieved was 61.4% under 900 W/m2, both obtained at 0.14 kg/s mass flow rate. Regarding exergy performance, the highest photovoltaic exergy obtained was 47.27 W under 900 W/m2 at 0.14 kg/s, while the highest thermal exergy was 9.67 W at 900 W/m2 at 0.01 kg/s. Overall, higher solar irradiance is more desirable for energy and exergy performance. Meanwhile, economic point of view, lower solar irradiance is preferable. Based on the findings, the optimal mass flow rate was 0.06 kg/s.
Improvement of the Performance of Graphite Felt Electrodes for Vanadium-Redox-Flow-Batteries by Plasma Treatment Eva-Maria Hammer; Benedikt Berger; Lidiya Komsiyska
International Journal of Renewable Energy Development Vol 3, No 1 (2014): February 2014
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.3.1.7-12

Abstract

In the frame of the present contribution oxidizing plasma pretreatment is used for the improvement of the electrocatalytic activity of graphite felt electrodes for Vanadium-Redox-Flow-Batteries (VRB). The influence of the working gas media on the catalytic activity and the surface morphology is demonstrated. The electrocatalytical properties of the graphite felt electrodes were examined by cyclic voltammetry and electrochemical impedance spectroscopy. The obtained results show that a significant improvement of the redox reaction kinetics can be achieved for all plasma modified samples using different working gasses (Ar, N2 and compressed air) in an oxidizing environment. Nitrogen plasma treatment leads to the highest catalytical activities at the same operational conditions. Through a variation of the nitrogen plasma treatment duration a maximum performance at about 14 min cm-2was observed, which is also represented by a minimum of 90 Ω in the charge transfer resistance obtained by EIS measurements. The morphology changes of the graphitized surface were followed using SEM.
An Experimental Investigation and Aspen HYSYS Simulation of Waste Polystyrene Catalytic Cracking Process for the Gasoline Fuel Production Selvaganapathy Thambiyapillai; Muthuvelayudham Ramanujam
International Journal of Renewable Energy Development Vol 10, No 4 (2021): November 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.33817

Abstract

Plastic wastes are necessary to recycle due to their disposal issues around the world. They can be recycled through various techniques i.e., mechanical reprocessing, mechanical recycling, chemical recycling and incineration. Most recycling techniques are expensive and end up in producing low-grade products excluding chemical recycling; it is an eco-friendly way to deal with plastic waste. Catalytic cracking is one of the chemical recycling methods, for converting waste plastics into liquid fuel same as commercial fuels. An experimental investigation of polystyrene catalytic cracking process was conducted with impregnated fly ash catalyst and 88.4% of liquid product yield was found as a maximum at optimum operating conditions 425 ̊C and 60 min. The liquid fuel quality was analyzed using FTIR spectra analysis, GC/MS analysis and Physico-chemical property analysis. The GC/MS analysis shows that the fly ash cracking of polystyrene leads to the production of gasoline fuels within the hydrocarbon range of C3-C24, and the aliphatic and aromatic functional compounds were detected using FTIR analysis. Moreover, the Aspen Hysys simulation of polystyrene catalytic cracking was conducted in a pyrolytic reactor at 425 ̊C and at the end of the simulation, 93.6% of liquid fuel yield was predicted. It was inferred that the simulation model for the catalytic cracking is substantial to fit the experimental data in terms of liquid fuel conversion
A 100% Renewable Energy Scenario for the Java-Bali Grid Matthias Guenther
International Journal of Renewable Energy Development Vol 7, No 1 (2018): February 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.1.13-22

Abstract

Currently, many countries try to satisfy their energy needs with an increasing usage of renewable resources. The general motivations, with varying weighting in the different countries, are ecological reasons, concerns about energy security, and economical considerations. A for now rather theoretical question, although interesting for opening a long-term perspective, is how an energy supply from exclusively renewable energy resources could look like. This question has to be answered individually for any specific energy supply system. The present paper has the objective to present and evaluate a scenario for an electricity supply only from renewable energy resources for the Java-Bali grid. After designing a load time series for the year 2050 for the Java-Bali grid, a scenario is developed how to cover the load with electricity from renewable energy resources alone. Assumptions about the usable energy sources are made as well as assumptions about the available power plant capacity or energy potential. A specific challenge is the fact that solar energy must be the main source in such a renewable-energy based system, which comes with the need for a large storage capacity to match the power supply at any time with the load. Several possibilities are presented how to bring down the storage capacity: the increment of the installed PV capacity, the usage of bioenergy for seasonal balancing, and the complementation of the proposed short-term storage with an additional long-term storage. The study shows some of the specific challenges that a gradual transformation of the current electricity supply system on Java and Bali into a renewable-energy-based one would face and gives some hints about how to cope with these challenges. Scenarios like the one designed in this study are an important tool for decision-makers who face the task to scrutinize the consequences of choosing between different development paths. Article History: Received: August 15th 2017; Received: October 18th 2017; Accepted: January 14th 2018; Available onlineHow to Cite This Article: Günther, M., Ganal, I. and Bofinger, S. (2018) A 100% Renewable Electricity Scenario for the Java-Bali Grid. Int. Journal of Renewable Energy Development, 7(1), 13-22.https://doi.org/10.14710/ijred.7.1.13-22
3D Numerical Investigation of Free Convection using Lattice Boltzmann and Finite Difference Methods Jaouad Benhamou; El Bachir Lahmer; Mohammed Jami; Mohammed Amine Moussaoui; Ahmed Mezrhab
International Journal of Renewable Energy Development Vol 11, No 4 (2022): November 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45383

Abstract

Numerical study of various physical phenomena in three dimensions has become a necessity to better understand the physical process than in two dimensions. Thus, in this paper, the code is elaborated to be adapted to the simulation of heat transfer in three dimensions. The numerical simulations are performed using a hybrid method. This method is based on the lattice Boltzmann approach for the computation of velocities, and on the finite difference technique for the calculation of temperature. The used numerical code is validated by examining the free convection in a cubic enclosure filled with air. Then, the analysis of the heat exchange between two cold vertical walls and a heated block located at the center of a cubic cavity is considered.  The performed simulations showed that for a small value of the Rayleigh number (Ra=103 for example), the fluid exchanges its heat almost equally with all hot surfaces of the obstacle. However, for large values of Ra (Ra≥104), the numerical results found showed that the heat exchange rate is greater on the bottom face compared to the other faces of the obstacle.

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue