cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 709 Documents
Domestic Wind Energy Planning for Deprived Communities in the Tropics: A Case Study of Nigeria Moses Eterigho Emetere; Omoremime Elizabeth Dania; Sunday Adeniran Afolalu
International Journal of Renewable Energy Development Vol 12, No 2 (2023): March 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.44018

Abstract

Despite the notable inventions in solar energy, it is still too high for standalone users from developing countries. For example, it cost $2200 to provide power for a two-bedroom apartment while the average citizen lives below the country’s poverty line of $381.75 per year. The use of fossil fuel generators remains cheaper, except there is an affordable energy option for the average populace. The objective of this study is to investigate the wind energy potential for domestic or standalone use in Nigeria. It is proposed that the domestic wind turbine will be relatively cheap for adoption. Hence, there is the need to wholistic examine the prospects of wind energy generation in Nigeria. Though previous studies had been carried out, none has been wholistic as presented in this research work. Forty years wind speed and wind direction dataset, i.e., 1980-2020, was obtained from the Modern-Era Retrospective analysis for Research and Applications (MERRA). The analysis of the wind energy potential across the research locations was considered using five sampling techniques, i.e., considering the general statistics of the forty years dataset; considering ten years in an evenly distributed pattern and accruable wind energy across the nation. It was observed that the early wet season (MAM) is the most unstable among the seasons. Also, sudden multi-directionality of the wind vectorization within forty years was observed. This event is ascribed to evidence of climate change to wind energy generation. Wind energy generation prospect was seen to be generally sustainable and reliable with SON, MAM, DJF and JJA having energy distribution of 325-950 kWh, 539-1700 kWh, 161-650 kWh and 761-3650 kWh respectively. Despite the variation of energy generation over the years within all seasons over Nigeria, it was found that it is predictable and can be optimized using various technological solutions. 
Energy performance evaluation of a photovoltaic thermal phase change material (PVT-PCM) using a spiral flow configuration Muhammad Syazwan Bin Aziz; Adnan Ibrahim; Muhammad Amir Aziat Bin Ishak
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.56052

Abstract

A relatively new technology, a hybrid photovoltaic thermal (PVT) solar collector, allows for producing electrical and thermal energy.  However, the module heats up more when exposed to sunlight thanks to the PVT collector's incorporation, reducing its efficiency.  Consequently, lowering the operating temperature is crucial for maximizing the system's effectiveness.  This research aims to create a photovoltaic thermal phase change material (PVT-PCM) solar collector and evaluate its energy performance through a controlled laboratory environment.  Two different PVT collector designs, one using water and the other using a phase change material (PCM), were evaluated using a spiral flow configuration.  Under a sun simulator, the PVT solar collector was subjected to 400 W/m2, 600 W/m2, and 800 W/m2 of solar irradiation at three different mass flow rates.  The results showed that under 800 W/m2 of solar irradiation and 0.033 kg/s mass flow rate, the collector using water could only reach an overall maximum efficiency of 64.34 %, whereas the PVT-PCM configuration with spiral flow had the maximum performance, with an overall efficiency of 67.63%.
A Novel Method of Electric Scooter Torque Estimation Using the Space Vector Modulation Control Chergui Hichem; Nasri Abdelfatah; Korhan Kayisli
International Journal of Renewable Energy Development Vol 10, No 2 (2021): May 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.33403

Abstract

In recent years, there are many studies have been conducted in the field of light electric vehicles, especially electric scooters. These are preferred in large urban areas that are crowded with cars and cause traffic congestion in the European and Asian continents. In this study, the three-wheel electric scooter contained two BLDC motors that drove the rear wheels and, each of these motors were controlled independently via an electronic differential. This paper aims to implement a Space Vector Modulation for the Direct Torque Control unit (SVM-DTC) of the BLDC wheel-motor of each driving wheel. The proposed system had been designed and simulated by using the MATLAB/SIMULINK environment. The performance of the overall system (scooter stability control system - energy storage system -power quality, etc.) with using SVM-DTC control was compared with the classical Direct Torque Control (DTC) algorithm by using the same electric scooter model. The obtained results showed clearly  the improvement made by the proposed control loop system at different stages, where it could reduce the THD of the stator current from 30.99% to 6.16%,as well as  it was able to achieve more than 0.2% of the charging state of the battery in 18 seconds only.
Production of Solid Fuel by Torrefaction Using Coconut Leaves As Renewable Biomass Lola Domnina Bote Pestaño; Wilfredo I. Jose
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.187-197

Abstract

The reserves of non-renewable energy sources such as coal, crude oil and natural gas are not limitless, they gradually get exhausted and their price continually increases. In the last four decades, researchers have been focusing on alternate fuel resources to meet the ever increasing energy demand and to avoid dependence on crude oil. Amongst different sources of renewable energy, biomass residues hold special promise due to their inherent capability to store solar energy and amenability to subsequent conversion to convenient solid, liquid and gaseous fuels. At present, among the coconut farm wastes such as husks, shell, coir dust and coconut leaves, the latter is considered the most grossly under-utilized by in situ burning in the coconut farm as means of disposal. In order to utilize dried coconut leaves and to improve its biomass properties, this research attempts to produce solid fuel by torrefaction using dried coconut leaves for use as alternative source of energy. Torrefaction is a thermal method for the conversion of biomass operating in the low temperature range of 200oC-300oC under atmospheric conditions in absence of oxygen. Dried coconut leaves were torrefied at different feedstock conditions. The key torrefaction products were collected and analyzed. Physical and combustion characteristics of both torrefied and untorrefied biomass were investigated. Torrefaction of dried coconut leaves significantly improved the heating value compared to that of the untreated biomass.  Proximate compositions of the torrefied biomass also improved and were comparable to coal. The distribution of the products of torrefaction depends highly on the process conditions such as torrefaction temperature and residence time. Physical and combustion characteristics of torrefied biomass were superior making it more suitable for fuel applications.Article History: Received June 24th 2016; Received in revised form August 16th 2016; Accepted 27th 2016; Available onlineHow to Cite This Article: Pestaño, L.D.B. and Jose, W.I. (2016) Production of Solid Fuel by Torrefaction Using Coconut Leaves As Renewable Biomass. Int. Journal of Renewable Energy Development, 5(3), 187-197.http://dx.doi.org/10.14710/ijred.5.3.187-197
Performance analysis of a fabricated line focusing concentrated solar distillation system Temoor Abbas Larik; Abdul Qayoom Jakhrani; Abdul Rehman Jatoi; Kishan Chand Mukwana
International Journal of Renewable Energy Development Vol 8, No 2 (2019): July 2019
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.8.2.185-192

Abstract

A line focusing concentrated solar distillation unit was developed and its techno-economic analysis was carried out using batch flow, continuous flow without and with tracking mechanisms. Physical quality parameters of feed and distilled water samples, water temperature at different points, performance analysis and estimated production of developed unit were examined. The examined quality parameters of distilled water were well below permissible limits. The water temperature inside the concentrated tube was in the range of 107.0˚C to 109.0˚C. The quantity of distilled water was observed to be inversely proportional to the amount of total dissolved solids in the water samples. The measured average daily and estimated lifetime yield from the developed unit during batch flow was 4.0 and 13,621.0 liters, for continuous flow without tracking 5.1 and 19,689.0 liters, and with tracking mechanism 5.7 and 21,758.0 liters, respectively. The continuous flow with tracking mechanism was found as best method for the production of distilled water. The total life cycle cost of the project was estimated to be PKR 62,144.00. The estimated unit cost of the distilled water per liter would be PKR 6.06 for continuous flow with tracking and PKR 9.69 for batch flow technique. ©2019. CBIORE-IJRED. All rights reserved
Prospects of low carbon development for Pakistan’s energy and power sector in the post Covid scenario Ubaid ur Rehman Zia; Hina Aslam; Muhammad Zulfiqar; Sibghat Ullah
International Journal of Renewable Energy Development Vol 12, No 4 (2023): July 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.49927

Abstract

In the backdrop of COVID19 recovery, Pakistan is still struggling to cope with the economic challenges and disruptions caused in the energy supply chain. On one hand where COVID has brought serious socio-economic costs and prolonged delays, it has also provided opportunity for developing countries such as Pakistan to “build-forward-better” their economies in a more sustainable and climate friendly manner. This study particularly highlights the impact of COVID on energy supply and demand sectors of Pakistan, its near- and long-term impacts, and what policy interventions can be adopted to put Pakistan on-track to achieve its Nationally Determined Contributions (NDCs). The economic focus in on “Green Recovery” and what key interventions will foster a rapid transition towards decarbonization in Pakistan. Low Emission Analysis Platform (LEAP) model is used to provide energy sector outlook (2020-2040) of Pakistan under different scenario i.e., Pre COVID growth, Business-as-Usual, Slow Recovery, and Green Recovery from COVID. The results obtained from the model depicts that following a green recovery scenario, Pakistan can reduce around 10 Mtoe (9%) of its total energy use, 53 TWh of electricity, 19 Mt of emissions from demand sectors, and 11 Mt of emissions from the power sector by 2030. For total levelized cost of the power sector, the green recovery scenario represents a generation cost of $13 billion by 2030 which further highlights that energy efficiency could lead to cost savings of approximately $3 billion each year by 2030. Green recovery is however still a daunting task as it would require economic stimulus of $8 billion only to recover to its pre COVID scenario and total investments of $120 billion by 2030.
Premixed Combustion of Coconut Oil on Perforated Burner I.K.G. Wirawan; I.N.G. Wardana; Rudy Soenoko; Slamet Wahyudi
International Journal of Renewable Energy Development Vol 2, No 3 (2013): October 2013
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2.3.133-139

Abstract

Coconut oil premixed combustion behavior has been studied experimentally on perforated burner with equivalence ratio (φ) varied from very lean until very rich. The results showed that burning of glycerol needs large number of air so that the laminar burning velocity (SL) is the highest at very lean mixture and the flame is in the form of individual Bunsen flame on each of the perforated plate hole. As φ is increased the  SL decreases and the secondary Bunsen flame with open tip occurs from φ =0.54 at the downstream of perforated flame. The perforated flame disappears at φ = 0.66 while the secondary Bunsen flame still exist with SL increases following that of hexadecane flame trend and then extinct when the equivalence ratio reaches one or more. Surrounding ambient air intervention makes SL decreases, shifts lower flammability limit into richer mixture, and performs triple and cellular flames. The glycerol diffusion flame radiation burned fatty acids that perform cellular islands on perforated hole.  Without glycerol, laminar flame velocity becomes higher and more stable as perforated flame at higher φ. At rich mixture the Bunsen flame becomes unstable and performs petal cellular around the cone flame front. 
Co-combustion Characteristics and Kinetics Behavior of Torrefied Sugarcane Bagasse and Lignite Ukrit Samaksaman; Kanit Manatura
International Journal of Renewable Energy Development Vol 10, No 4 (2021): November 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.37249

Abstract

The co-combustion characteristics and kinetics of torrefied sugarcane bagasse (TB), lignite (L), and their blended samples were experimentally investigated using thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG)based on the Coats-Redfern method for kinetic estimation.Their physicochemical properties were also investigated.Raw bagasse was thermally treated in a laboratory-scale torrefactor at 275 °C with a torrefaction time of 60 min under an inert nitrogen environment.Then, the torrefied bagasse was blended with Thai lignite as a co-fuel at ratios of 50:50 (TB50L50), 70;30(TB70L30), and 90:10 (TB90L10), respectively. Torrefaction improved the fuel properties and heating value of the raw bagasse as well as reducing the O/C and H/C ratios.In addition, the blending of torrefied bagasse with lignite improved the combustion behavior.The TGA and DTG results indicated that the ignition and burnout temperatures stepped downwards with different increasing ratios of torrefied bagasse.The co-combustion behavior at the maximum burning rate showed that the burnout temperatures of TB50L50, TB70L30, and TB90L10 were 532, 529, and 528 °C, respectively, indicating a slight decrease with an increasing torrefied bagasse blending ratio.These results were sufficient to provide comprehensive guidelines in terms of the design and operation of the combustion system for adding torrefied bagasse into the co-firing process.
The Effects of Different Roughness Configurations on Aerodynamic Performance of Wind Turbine Airfoil and Blade Kamyar Jafari; Mohammad Hassan Djavareshkian; Behzad Forouzi Feshalami
International Journal of Renewable Energy Development Vol 6, No 3 (2017): October 2017
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.6.3.273-281

Abstract

 In this research, viscous and turbulent flow is simulated numerically on an E387 airfoil as well as on a turbine blade. The main objective of this paper is to investigate various configurations of roughness to find a solution in order to mitigate roughness destructive impacts. Hence, the sand grain roughness is distributed uniformly along pressure side, suction side and both sides during the manufacturing process. Navier-Stokes equations are discretized by the finite volume method and are solved by SIMPLE algorithm. Results indicated that in contrast with previous studies, the roughness will be useful if it is applied on only pressure side of the airfoil. In this condition, the lift coefficient is increased to  and 1.2% compare to the airfoil with rough and smooth sides, respectively. However, in 3-D simulation, the lift coefficient of the blade with pressure surface roughness is less than smooth blade, but still its destructive impacts are much less than of both surfaces roughness and suction surfaces roughness. Therefore, it can be deduced that in order to reveal the influence of roughness, the simulation must be accomplished in three dimensions.Article History: Received Jun 12th 2017; Received in revised form August 27th 2017; Accepted Oct 3rd 2017; Available onlineHow to Cite This Article: Jafari, K., Djavareshkian, M.H., Feshalami, B.H. (2017) The Effects of Different Roughness Configurations on Aerodynamic Performance of Wind Turbine Airfoil and Blade. International Journal of Renewable Energy Development, 6(3), 273-281.https://doi.org/10.14710/ijred.6.3.273-281
Thermal Performance Improvement of the Heat Pipe by Employing Dolomite/Ethylene Glycol Nanofluid Duygu Yilmaz Aydin; Metin Gürü; Adnan Sözen; Erdem Çiftçi
International Journal of Renewable Energy Development Vol 9, No 1 (2020): February 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.1.23-27

Abstract

In heat transfer applications, heat pipes are widely- preferred because of some characteristics such as low cost, being able to be produced in any size and low maintenance cost make them superior. Moreover, the working fluid to be employed substantially affects the heat transfer characteristics of a heat pipe. In this paper, effects of nanoparticle addition into the ethylene glycol on heat pipe’s thermal performance were analysed experimentally. Every test was done using two variant working fluids, ethylene glycol and dolomite nanoparticles-doped ethylene glycol, respectively. Dolomite nanoparticles (2% by weight) and Sodium Dodecyl Benzene Sulfonate (0.5% by weight) were doped into the ethylene glycol while preparing the dolomite/ethylene glycol nanofluid. After filling in the heat pipe, experiments were realized under changing working conditions. Using experimental data, efficiency and thermal resistance of the heat pipe were examined. Viscosity of the each working fluid was determined. The contact angle –wettability measurements were also performed to specify the effects of surface active agent addition. The obtained findings revealed that nanoparticle inclusion inside the base fluid, i.e. ethylene glycol, improved the thermal performance (efficiency) and decreased the heat pipe’s thermal resistance substantially. ©2020. CBIORE-IJRED. All rights reserved

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue