cover
Contact Name
H Hadiyanto
Contact Email
hadiyanto@che.undip.ac.id
Phone
-
Journal Mail Official
ijred@live.undip.ac.id
Editorial Address
CBIORE office, Jl. Prof. Soedarto, SH-Tembalang Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
International Journal of Renewable Energy Development
ISSN : 22524940     EISSN : 27164519     DOI : https://doi.org/10.61435/ijred.xxx.xxx
The International Journal of Renewable Energy Development - (Int. J. Renew. Energy Dev.; p-ISSN: 2252-4940; e-ISSN:2716-4519) is an open access and peer-reviewed journal co-published by Center of Biomass and Renewable Energy (CBIORE) that aims to promote renewable energy researches and developments, and it provides a link between scientists, engineers, economist, societies and other practitioners. International Journal of Renewable Energy Development is currently being indexed in Scopus database and has a listing and ranking in the SJR (SCImago Journal and Country Rank), ESCI (Clarivate Analytics), CNKI Scholar as well as accredited in SINTA 1 (First grade category journal) by The Directorate General of Higher Education, The Ministry of Education, Culture, Research and Technology, The Republic of Indonesia under a decree No 200/M/KPT/2020. The scope of journal encompasses: Photovoltaic technology, Solar thermal applications, Biomass and Bioenergy, Wind energy technology, Material science and technology, Low energy architecture, Geothermal energy, Wave and tidal energy, Hydro power, Hydrogen production technology, Energy policy, Socio-economic on energy, Energy efficiency, planning and management, Life cycle assessment. The journal also welcomes papers on other related topics provided that such topics are within the context of the broader multi-disciplinary scope of developments of renewable energy.
Articles 709 Documents
Thermal Performance Comparison of Parabolic Trough Collector (PTC) Using Various Nanofluids Ashutosh Shirole; Mahesh Wagh; Vivek Kulkarni
International Journal of Renewable Energy Development Vol 10, No 4 (2021): November 2021
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2021.33801

Abstract

The objective of this paper is to investigate the theoretical performance of Parabolic Trough Collector (PTC) using various nanofluids. The theoretical performances are calculated for Al2O3, graphite, magnetite, SWCNH, CuO, SiO2, MWCNT, TiO2, Fe2O3, and ZnO in water nanofluids. The heat transfer equations, thermodynamic properties of nanofluid and pumping power are utilised for the development of novel thermal model.  The theoretical thermal efficiency of the PTC is calculated, and the economic viability of the technology is predicted for a range of nanofluid concentration. The results showed that the thermal conductivity increases with the concentration of nanoparticles in the base fluid. Magnetite nanofluid showed the highest thermal efficiency, followed by CuO, MWCNT, ZnO, SWCNH, TiO2, Fe2O3, Al2O3, graphite, and SiO2, respectively. The study reveals that MWCNT at 0.4% concentration is the best-suited nanofluid considering thermal gain and pumping power. Most of the nanofluids achieved optimum efficiency at 0.4% concentration. The influence of mass flow rate on thermal efficiency is evaluated. When the mass flow rate increased from 70 Kg/hr to 90Kg/hr, a 10%-20% efficiency increase is observed. Dispersing nanofluids reduces the levelized cost of energy of large-scale power plants. These findings add to the knowledge of the scientific community aimed explicitly at solar thermal energy technology. The report can also be used as a base to pursue solar thermal projects on an economic basis.
Scale up sediment microbial fuel cell for powering Led lighting Jeetendra Prasad; Ramesh Kumar Tripathi
International Journal of Renewable Energy Development Vol 7, No 1 (2018): February 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.1.53-58

Abstract

Sediment microbial fuel cells (SMFCs) are expected to be utilized as a sustainable power source for remote environmental observing 30 day’s investigations of experiment to understand the long-term performance of SMFCs. The point of this investigation is to increase power generation, 8 individual sediment microbial fuel cells is stacked together either in series or in hybrid connection. Two combinations, of the hybrid connection, are proving to be the more effective one, step-up both the voltage and current of the framework, mutually. Polarization curve tests are done for series and hybrid connected sediment microbial fuel cell. The maximum study state voltage and current are obtained 8.150V and 435.25µA from series and 4.078V and 870.75µA hybrid connected SMFC. This study suggests that power of SMFC scale-up by connecting series and hybrid for practical use of the device.Article History: Received : September 26th 2017; Received: December 24th 2017; Accepted: January 4th 2018; Available onlineHow to Cite This Article: Prasad, J and Tripathi, R.K. (2018) Scale Up Sediment Microbial Fuel Cell For Powering Led Lighting. International Journal of Renewable Energy Development, 7(1), 53-58.https://doi.org/10.14710/ijred.7.1.53-58 
Electrical Energy Management According to Pricing Policy: A Case in Vietnam Thi Tuyet Mai Nguyen; Pham Nguyen Dang Khoa; Ngoc Anh Huynh
International Journal of Renewable Energy Development Vol 11, No 3 (2022): August 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.46302

Abstract

Electrical equipment is increasingly diversified in both types and capacity to meet the maximum needs of people in the 4th industrial revolution. This development has helped people to achieve many great scientific achievements, but this development has led to a rapid increase in the demand for electric energy in recent years. The traditional electricity supply from fossil fuels is gradually depleting, which has prompted the search for clean and renewable energy sources to gradually replace the dependence on this energy source. Prosumer, HEMS (home energy management system), and other solutions have been researched and applied to optimize electrical energy sources. However, for countries that mainly use fossil energy sources like Vietnam, these solutions are not effective. Policy on the management could help to solve this problem, in particular, the price policy is the solution that Vietnam has used to effectively manage this energy source. This article analyzes the issues of applicable pricing policy in Vietnam, proposes potential policies to improve and protect the electric energy system, as well as enhances the rate of renewable energy use in the electricity system in Vietnam
An Efficient Algorithm for Power Prediction in PV Generation System Qais Alsafasfeh
International Journal of Renewable Energy Development Vol 9, No 2 (2020): July 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.9.2.207-216

Abstract

Aiming at the existing photovoltaic power generation prediction methods, the modeling is complicated, the prediction accuracy is low, and it is difficult to meet the actual needs. Based on the improvement of the traditional wavelet neural network, a dual-mode cuckoo search wavelet neural network algorithm combined prediction method is proposed, which takes into account the extraction of chaotic features of surface solar radiation and photovoltaic output power. The proposed algorithm first reconstructs the chaotic phase space of the hidden information of each influencing factor in the data history of PV generation and according to the correlation analysis, the solar radiation is utilized as additional input. Next, the proposed algorithm overcomes the limitations of the cuckoo search algorithm such as the sensitivity to the initial value and searchability and convergence speed by dual-mode cuckoo search wavelet neural network algorithm. Lastly, a prediction model of the proposed algorithm is proposed and the prediction analysis is performed under different weather conditions. Simulation results show that the proposed algorithm shows better performance than the existing algorithms under different weather conditions. Under various weather conditions, the mean values of TIC, EMAE and ENRMSE error indicators of the proposed forecasting algorithm were reduced by 43.70%, 45.75%, and 45.41%, respectively. Compared with the Chaos-WNN prediction method, the prediction performance has been further improved under various weather conditions and the mean values of TIC, EMAE and ENRMSE error indicators have been reduced by 25.55%, 27.26%, and 36.83%, respectively. 
Study and Optimization of a Hybrid Power Generation System to Power Kalakala, a Remote Locality in Northern Côte d'Ivoire Jules Yao Koffi; Koita Mohamed Sako; Blaise Kamenan Koua; Paul Magloire Ekoun Koffi; Yao Nguessan; Alphonse Kouadio Diango
International Journal of Renewable Energy Development Vol 11, No 1 (2022): February 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.38492

Abstract

This work presents the results of a study to optimize the production of electricity, by hybrid system Photovoltaic – Diesel – Batteries, to power the village of Kalakala in the north of Côte d'Ivoire. The study site is an isolated rural community, powered by a diesel generator. It is located in northern Côte d'Ivoire. HOMER software has been used for system simulation and optimization. The result of this study is then compared to those of PV - Batteries and diesel alone systems. From the results of the simulations, it appears that the optimal combination of the hybrid system includes a diesel generator of 50 kW, a photovoltaic field of 46 kW, 10 batteries of 48V and a converter of 100 kW. With a photovoltaic penetration rate of 52.7%, this system, compared to the photovoltaic - batteries system, reduces the photovoltaic field by 56%, the number of batteries by 61.5% and increases battery life by 42.84%. Compared to diesel alone, it reduces fuel consumption and the quantity of CO2 by 60% and improves diesel efficiency by 17%. The cost of generating electricity for the hybrid system is €0.373/kWh compared to €0.466 and €0.608/kWh respectively, for the PV-Batteries and diesel alone systems. The hybrid system with the best technical, economic and environmental performance could be a good alternative for generating electricity in remote communities.
Investigating the effect of DG infeed on the effective cover of distance protection scheme in mixed-MV distribution network Saad Muftah Saad; Naser El Naily; Faisal A. Mohamed
International Journal of Renewable Energy Development Vol 7, No 3 (2018): October 2018
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.7.3.223-231

Abstract

The environmental and economic features of renewable energy sources have made it possible to be integrated as Distributed Generation (DG) units in distribution networks and to be widely utilized in modern distribution systems. The intermittent nature of renewable energy sources, altering operational conditions, and the complex topology of active distribution networks makes the level of fault currents significantly variable. Thus, the use of distance protection scheme instead of conventional overcurrent schemes offers an appropriate alternative for protection of modern distribution networks. In this study, the effect of integrating multiple DG units on the effective cover of distance protection schemes and the coordination between various relays in the network was studied and investigated in radiology and meshed operational topologies. Also, in cases of islanded and grid-connected modes. An adaptive distance scheme has been proposed for adequate planning of protection schemes to protect complex networks with multiple distribution sources. The simplified simulated network implemented in NEPLAN represents a benchmark IEC microgrid. The comprehensive results show an effective protection measure for secured microgrid operation.Article History: Received October 18th 2017; Received in revised form May 17th 2018; Accepted July 8th 2018; Available onlineHow to Cite This Article: Saad, S.M., Naily, N.E. and Mohamed, F.A. (2018). Investigating the Effect of DG Infeed on the Effective Cover of Distance Protection Scheme in Mixed-MV Distribution Network. International Journal of Renewable Energy Development, 7(3), 223-231.https://doi.org/10.14710/ijred.7.3.223-231
Experimental Study of Rice Husk Fluidization Without a Sand Bed Material on a Bubbling Fluidized Bed Gasifier Abeth Novria Sonjaya; Kania Safitri; Adi Surjosatyo
International Journal of Renewable Energy Development Vol 12, No 1 (2023): January 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.46068

Abstract

This study aimed to determine the effect of rice husk fluidization and variation in the equivalence ratio of bubbling fluidized bed gasifiers without sand bed materials. It also aimed to improve the fluidization quality by reducing the diameter of rice husks. Therefore, the bulk density increases, whereas voidage decreases, both of which are the main parameters for improving the quality of fluidization in solid particles. Experiments were carried out at a velocity of 0.82 m/s, by varying the equivalent ratios ranging from 0.20 to 0.35, and analyzing the syngas composition, cold gas and carbon conversion efficiencies, lower heating value, and temperature distribution. An equivalence ratio of 0.30 was obtained for a bubbling fluidized gasifier with syngas compositions of 7.415%, 15.674%, 3.071%, 17.839%, and 56.031% for H2, CO, CH4, CO2, and N2, respectively. Under these conditions, we obtained cold gas and carbon conversion efficiencies and a lower heating value of 31.340%, 37.120%, and 3.881 MJ/Nm3, respectively.
Performance and Techno-Economic Analysis of Scaling-up A Single-Chamber Yeast Microbial Fuel Cell as Dissolved Oxygen Biosensor Marcelinus Christwardana; Linda Aliffia Yoshi
International Journal of Renewable Energy Development Vol 9, No 3 (2020): October 2020
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2020.29980

Abstract

The Microbial fuel cells (MFCs) are electrochemical devices that can be utilized as biosensors, specifically Dissolved Oxygen (DO) biosensors. In this research, performance and techno-economic of MFC-based DO biosensors with two sizes, small and large, were evaluated and analysed to determine whether it is more economical to use a small or large reactor. MFC-based DO biosensors were also applied to an irrigation canal. When MFC immersed into distilled water with several variations of DO, the correlation between DO and current density produced equation with R2 values around 0.9989 and 0.9979 for SYMFC and LYMFC, respectively. The power density for SYMFC and LYMFC was 3.48 and 10.89 mW/m2, respectively, in DO 6. Higher power densities are correlated with the electrode surface area, especially the larger cathodic surface area. When applied to the irrigation canal, DO values measured using SYMFC and LYMFC have errors of around 3.39 and 4.42%, respectively, when compared to DO values measured using DO meters. LYMFC requires a capital cost of around $ 234.22 or 2.57 times higher than SYMFC, although it generates almost similar cost per mW/m2, $ 21.51 and $ 26.23 for LYMFC and SYMFC, respectively. The results concluded that yeast MFC -based DO biosensors with smaller sizes can achieve more economical compared to larger sizes.
Enhancement and Optimization Mechanisms of Biogas Production for Rural Household Energy in Developing Countries: A review Yitayal Addis Alemayehu
International Journal of Renewable Energy Development Vol 4, No 3 (2015): October 2015
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.4.3.189-196

Abstract

Anaerobic digestion is common but vital process used for biogas and fertilizer production as well as one method for waste treatment. The process is currently used in developing countries primarily for biogas production in the household level of rural people. The aim of this review is to indicate possible ways of including rural households who own less than four heads of cattle for the biogas programs in developing countries. The review provides different research out puts on using biogas substrates other than cow dung or its mix through different enhancement and optimization mechanisms. Many biodegradable materials have been studied for alternative methane production. Therefore, these substrates could be used for production by addressing the optimum conditions for each factor and each processes for enhanced and optimized biogas production.
Extracted Pomace Olive Oil Use for the Preparation of Starch Graft Copolymer Ola Dayoub; Sami Karam; Saeed Alkjk; Soulayman Soulayman
International Journal of Renewable Energy Development Vol 11, No 2 (2022): May 2022
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2022.45107

Abstract

In this work, the relevant parameters of a pomace olive oil consecutive solvent extraction method using ethanol, and petroleum ether are investigated from dry and wet pomace samples. It is found that, oil extraction from dry samples with petroleum ether showed a high yield (11.72±0.30%) with solvent recovery of 89%, while extraction yield with ethanol is (11.1±0.60%) with solvent recovery of 90%. Moreover, it is found that the oil extraction from wet samples with ethanol is possible but the economic feasibility is not proven as the solvent recovery is of 62%. On the other hand, the possibility of hydrolysis of the crude extracted pomace oil in alkaline medium is demonstrated in this work. In this context, the starch grafting of the obtained long chain mono-fatty acids was accomplished in the presence of Fenton's reagent in a Dimethyl formamide (DMFA)/Water solution. Sonication is used for reaction mixture homogeny and the biopolymer was obtained using domestic microwave heating. After characterizing the obtained grafting polymer, it was employed to prepare a composite material with polyvinyl alcohol. The prepared PVA composite film of grafted starch (PVA/gSt) has tensile strength of (5.84 MPa) while its elongation modulus increased by 123.6%. Moreover, it was observed, in this work, that (PVA/gSt) copolymerization increases both the crystalline structure and the morphological order. This result is contrary to the available literature related to copolymerization of starch with different mono acids. It is found that, the consecutive solvent extraction method is of promising aspect from technical and economic point of view and the grafted starch compatibility with other polymers may be improved. The PVA/gSt films could be applied as packaging films.

Filter by Year

2012 2026


Filter By Issues
All Issue Vol 15, No 2 (2026): March 2026 Vol 15, No 1 (2026): January 2026 Vol 14, No 6 (2025): November 2025 Vol 14, No 5 (2025): September 2025 Vol 14, No 4 (2025): July 2025 Vol 14, No 3 (2025): May 2025 Vol 14, No 2 (2025): March 2025 Vol 14, No 1 (2025): January 2025 Accepted Articles Vol 13, No 6 (2024): November 2024 Vol 13, No 5 (2024): September 2024 Vol 13, No 4 (2024): July 2024 Vol 13, No 3 (2024): May 2024 Vol 13, No 2 (2024): March 2024 Vol 13, No 1 (2024): January 2024 Vol 12, No 6 (2023): November 2023 Vol 12, No 5 (2023): September 2023 Vol 12, No 4 (2023): July 2023 Vol 12, No 3 (2023): May 2023 Vol 12, No 2 (2023): March 2023 Vol 12, No 1 (2023): January 2023 Vol 11, No 4 (2022): November 2022 Vol 11, No 3 (2022): August 2022 Vol 11, No 2 (2022): May 2022 Vol 11, No 1 (2022): February 2022 Vol 10, No 4 (2021): November 2021 Vol 10, No 3 (2021): August 2021 Vol 10, No 2 (2021): May 2021 Vol 10, No 1 (2021): February 2021 Vol 9, No 3 (2020): October 2020 Vol 9, No 2 (2020): July 2020 Vol 9, No 1 (2020): February 2020 Vol 8, No 3 (2019): October 2019 Vol 8, No 2 (2019): July 2019 Vol 8, No 1 (2019): February 2019 Vol 7, No 3 (2018): October 2018 Vol 7, No 2 (2018): July 2018 Vol 7, No 1 (2018): February 2018 Vol 6, No 3 (2017): October 2017 Vol 6, No 2 (2017): July 2017 Vol 6, No 1 (2017): February 2017 Vol 5, No 3 (2016): October 2016 Vol 5, No 2 (2016): July 2016 Vol 5, No 1 (2016): February 2016 Vol 4, No 3 (2015): October 2015 Vol 4, No 2 (2015): July 2015 Vol 4, No 1 (2015): February 2015 Vol 3, No 3 (2014): October 2014 Vol 3, No 2 (2014): July 2014 Vol 3, No 1 (2014): February 2014 Vol 2, No 3 (2013): October 2013 Vol 2, No 2 (2013): July 2013 Vol 2, No 1 (2013): February 2013 Vol 1, No 3 (2012): October 2012 Vol 1, No 2 (2012): July 2012 Vol 1, No 1 (2012): February 2012 More Issue