cover
Contact Name
Istadi
Contact Email
istadi@che.undip.ac.id
Phone
+6281316426342
Journal Mail Official
bcrec@live.undip.ac.id
Editorial Address
Editorial Office of Bulletin of Chemical Reaction Engineering & Catalysis Laboratory of Plasma-Catalysis (R3.5), UPT Laboratorium Terpadu, Universitas Diponegoro Jl. Prof. Soedarto, Semarang, Central Java, Indonesia 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
ISSN : -     EISSN : 19782993     DOI : https://doi.org/10.9767/bcrec
Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science, and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on the general chemical engineering process are not covered and out of the scope of this journal. This journal encompasses Original Research Articles, Review Articles (only selected/invited authors), and Short Communications, including: fundamentals of catalyst and catalysis; materials and nano-materials for catalyst; chemistry of catalyst and catalysis; surface chemistry of catalyst; applied catalysis; applied bio-catalysis; applied chemical reaction engineering; catalyst regeneration; catalyst deactivation; photocatalyst and photocatalysis; electrocatalysis for fuel cell application; applied bio-reactor; membrane bioreactor; fundamentals of chemical reaction engineering; kinetics studies of chemical reaction engineering; chemical reactor design (not process parameter optimization); enzymatic catalytic reaction (not process parameter optimization); kinetic studies of enzymatic reaction (not process parameter optimization); the industrial practice of catalyst; the industrial practice of chemical reactor engineering; application of plasma technology in catalysis and chemical reactor; and advanced technology for chemical reactors design. However, articles concerned about the "General Chemical Engineering Process" are not covered and out of the scope of this journal.
Articles 803 Documents
Crystal Structure and Catalytic Activity of A Novel Cd(II) Coordination Polymer Formed by Dicarboxylic Ligand Zhi Xiang Ji; Peng Fei Li
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1178.220-226

Abstract

A new Cd(II) coordination polymer, {[Cd3(L)2(DMF)2(H2O)2]·H2O}n (H2L = 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylic acid) was synthesized by one-pot synthesis method from 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylic acid, NaOH, DMF, and Cd(NO3)2·4H2O. Its structure was determined by elemental analysis and single crystal X-ray diffraction. Structural analysis shows that three Cd(II) ions are all six-coordinated with four oxygen atoms of four 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylate ligands and two O atoms from two DMF molecules (Cd1) or two oxygen atoms of two coordinated H2O molecules (Cd2 and Cd3) to form an octahedral coordination geometry. The Cd(II) coordination polymer displays a 1D chained structure by the bridging carboxylate groups from 1,3-bisbenzyl-2-imidazolidine-4,5-dicarboxylate ligands. The conversion of benzaldehyde is 90.9%, which is 40~50% higher than those of the other three aldehydes (4-methylbenzaldehyde, p-methoxybenzaldehyde and 3-chlorobenzaldehyde), so the Cd(II) coordination polymer catalyst shows better catalytic activity for the coupling reaction of benzaldehyde, phenylacetylene, and piperidine than the other three aldehydes. 
Flow Process Development and Optimization of A Suzuki-Miyaura Cross Coupling Reaction using Response Surface Methodology Girish Basavaraju; Ravishankar Rajanna
Bulletin of Chemical Reaction Engineering & Catalysis 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.15.3.8229.604-616

Abstract

A custom-made tubular flow reactor was utilized to develop a mathematical model and optimize the Suzuki-Miyaura cross coupling reaction. In this study, the experimentation was designed and executed through the statistical design of experiments (DoE) approach via response surface methodology. The effect of molar ratios of phenylboronic acid (1) and 4-bromophenol (2), temperature, the catalyst tetrakis(triphenylphosphine)palladium, and equivalence of aqueous tripotassium phosphate was studied in detail. The flow reactor profile was in good agreement with batch conditions and significant improvements to the overall reaction time and selectivity towards desired [1-1-biphenyl]-4-ol (3) was achieved. The Suzuki coupling reaction in batch condition would take on an average of 4 to 6 hours to complete, which was effectively accomplished in 60 to 70 minutes in this tubular reactor setup and could be operated continuously. The reaction model is in good agreement with the reaction conditions. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Synthesis of Magnetic Base Catalyst from Industrial Waste for Transesterification of Palm Oil Shamala Gowri Krishnan; Fei-Ling Pua; Hong-Hua Lim
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12412.53-64

Abstract

Industrial waste is produced in large amounts annually; without proper planning, the waste might cause a serious threat to the environment. Hence, an industrial waste-based heterogeneous magnetic catalyst was synthesized using carbide lime waste (CLW) as raw material for biodiesel production via transesterification of palm oil. The catalyst was successfully synthesized by the one-step impregnation method and calcination at 600 °C. The synthesized catalyst, C-CLW/g-Fe2O3, was characterized by temperature-programmed desorption of carbon dioxide (CO2-TPD), scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FT-IR). The catalyst has a specific surface area of 18.54 m2/g and high basicity of 3,637.20 µmol/g. The catalytic performance shows that the optimum reaction conditions are 6 wt% catalyst loading, 12:1 methanol to oil molar ratio with the reaction time of 3 h at 60 °C to produce 90.5% biodiesel yield. The catalyst exhibits good catalytic activity and magnetism, indicating that the CLW can be a potential raw material for catalyst preparation and application in the biodiesel industry. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium Sayed M. Badawy; R. A. El-Khashab; A. A. Nayl
Bulletin of Chemical Reaction Engineering & Catalysis 2015: BCREC Volume 10 Issue 2 Year 2015 (August 2015)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.10.2.7984.169-174

Abstract

Copper/Copper oxide (Cu/Cu2O) nanoparticles were synthesized by modified chemical reduction method in an aqueous medium using hydrazine as reducing agent and copper sulfate pentahydrate as precursor. The Cu/Cu2O nanoparticles were characterized by X-ray Diffraction (XRD), Energy Dispersive X-ray Fluorescence (EDXRF), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The analysis revealed the pattern of face-centered cubic (fcc) crystal structure of copper Cu metal and cubic cuprites structure for Cu2O. The SEM result showed monodispersed and agglomerated particles with two micron sizes of about 180 nm and 800 nm, respectively. The TEM result showed few single crystal particles of face-centered cubic structures with average particle size about 11-14 nm. The catalytic activity of Cu/Cu2O nanoparticles for the decomposition of hydrogen peroxide was investigated and compared with manganese oxide MnO2. The results showed that the second-order equation provides the best correlation for the catalytic decomposition of H2O2 on Cu/Cu2O. The catalytic activity of hydrogen peroxide by Cu/Cu2O is less than the catalytic activity of MnO2 due to the presence of copper metal Cu with cuprous oxide Cu2O. © 2015 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
Synthesis of Titania Doped Copper Ferrite Photocatalyst and Its Photoactivity towards Methylene Blue Degradation under Visible Light Irradiation Md. Noor Arifin; Kaykobad Md. Rezaul Karim; Hamidah Abdullah; Maksudur R. Khan
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.14.1.3616.219-227

Abstract

This paper reports the photocatalytic decomposition of methylene blue (MB) over titania doped copper ferrite, CuFe2O4/TiO2 with 50 wt% loading, synthesized via sol-gel method. The synthesized photocatalyst was characterized by X-ray diffraction, UV-vis diffuse reflectance, and photoluminescence, Mott-Schottky (MS) analysis and linear sweep voltammetry (LSV). The catalyst loadings were varied from 0.25 – 1.0 g/L and the optimum catalyst loading found to be 0.5 g/L. At the optimum loading, the conversion achieved was 83.7%. The other loadings produced slightly lower conversions at 82.7%, 80.6% and 80.0%, corresponding to 0.25, 1 and 0.75 g/L after 3 hours of irradiation. The study on the effect of initial concentration indicated that 20 ppm as the optimum concentration, tested with 0.5 g/L catalyst loading. The spent catalyst was used for the recyclability test and demonstrated a high longevity with a degradation efficiency less than 6 % for each time interval. The novelty of this study lies on the new application of photocatalytic material, CuFe2O4/TiO2 on thiazine dye that shows remarkable activity and reusability performance under visible light irradiation. 
Study of Enzymatic Hydrolysis of Dilute Acid Pretreated Coconut Husk Rudy Agustriyanto; Akbarningrum Fatmawati; Yusnita Liasari
Bulletin of Chemical Reaction Engineering & Catalysis 2012: BCREC Volume 7 Issue 2 Year 2012 (December 2012)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.7.2.4046.137-141

Abstract

Coconut husk is classified as complex lignocellulosic material that contains cellulose, hemicellulose, lignin, and some other extractive compounds. Cellulose from coconut husk can be used as fermentation substrate after enzymatic hydrolysis. In contrary, lignin content from the coconut husk will act as an inhibitor in this hydrolysis process. Therefore, a pretreatment process is needed to enhance the hydrolysis of cellulose. The objective of this research is to investigate the production of the glucose through dilute acid pretreatment and to obtain its optimum operating conditions. In this study, the pretreatment was done using dilute sulfuric acid in an autoclave reactor. The pretreatment condition were varied at 80°C, 100°C, 120°C and 0.9%, 1.2%, 1.5% for temperature and acid concentration respectively. The acid pretreated coconut husk was then hydrolyzed using commercial cellulase (celluclast) and β-glucosidase (Novozyme 188). The hydrolysis time was 72 hours and the operating conditions were varied at several temperature and pH. From the experimental results it can be concluded that the delignification temperature variation has greater influence than the acid concentration. The optimum operating condition was obtained at pH 4 and 50°C which was pretreated at 100°C using 1.5% acid concentration. © 2012 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
An Experimental and Computational Study of Zeolitic Imidazole Framework (ZIF-8) Synthesis Modulated with Sodium Chloride and Its Interaction with CO2 Lita Priandani; Amarilis Aliefa; Oka Pradipta Arjasa; Fajar Inggit Pambudi
Bulletin of Chemical Reaction Engineering & Catalysis 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20033

Abstract

The increase of CO2 level in atmosphere becomes one of the driving forces for research on functional materials. Capturing and utilizing of CO2 are more important than ever, both to reduce CO2 emission and to increase the economic value of CO2 derivatives. In this study, synthesis of metal-organic frameworks (MOFs) was conducted by combining Zn2+ metal nodes and 2-methylimidazolate ligand to form zeolitic imidazolate frameworks (ZIF-8) materials. ZIF-8 was synthesised with the addition of sodium chloride to modulate the crystal morphology during the in-situ synthesis, using either water or methanol as the solvent. According to the refinement of the X-ray diffraction pattern, the ZIF-8 materials were successfully prepared and have unit cell parameters that are reasonably close to the available standard. The formation of ZIF-8 is also confirmed by IR spectroscopy, which reveals the stretching vibration mode of Zn−N from the coordination between Zn2+ and 2-methylimidazolate ligand. The crystal morphology exhibits different shape, as observed in SEM and TEM studies, with the dominant shape being a rhombic dodecahedron. The interaction between ZIF-8 and CO2 was investigated via ex-situ IR spectroscopy, combined with several computational techniques such as density functional theory and molecular dynamics, to elucidate the nature of the CO2 binding sites. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Syngas Production via Methane Dry Reforming over La-Ni-Co and La-Ni-Cu Catalysts with Spinel and Perovskite Structures Hassiba Messaoudi; Sébastien Thomas; Samira Slyemi; Abdelhamid Djaidja; Akila Barama
Bulletin of Chemical Reaction Engineering & Catalysis 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.15.3.9295.885-897

Abstract

In this paper, the catalytic properties of La-Ni-M (M = Co, Cu) based materials in dry reforming of methane (DRM) for syngas (CO + H2) production, were studied in the temperature range 773−1073 K. The LaNi0.9M0.1O3 and La2Ni0.9M0.1O4 (M = Co, Cu and Ni/M = 0.9/0.1) catalysts were prepared by partial substitution of Ni by Co or Cu using sol-gel method then characterized by XRD, H2-TPR and N2 physisorption. The XRD analysis of fresh catalysts showed, in the case of Co-substitution, the formation of La-Ni and La-Co perovskite and spinel structures, while only LaNiO3 and La2NiO4 phases were observed for the Cu-substituted samples. The substitution of these two structures by copper decreases the reduction temperature compared to cobalt. The reactivity results showed that the partial substitution of nickel by copper decreases the methane activation temperature, whereas a better stability of catalytic activity and syngas production was obtained via the cobalt-substituted catalysts, which is due to a synergistic effect between Ni and Co. The TPO analysis carried out on the spent catalysts indicated that the lowest carbon deposition was obtained for the cobalt substituted samples. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).  
Effect of Polymer Concentration on the Photocatalytic Membrane Performance of PAN/TiO2/CNT Nanofiber for Methylene Blue Removal through Cross-Flow Membrane Reactor Lathifah Puji Hastuti; Ahmad Kusumaatmaja; Adi Darmawan; Indriana Kartini
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.2.13668.350-362

Abstract

A photocatalytic membrane combining photocatalyst and membrane technology based on polyacrylonitrile (PAN) and TiO2/CNT has been developed. Such combination is to overcome fouling formation on the membrane, thus prolonging the membrane lifetime and enhancing the efficiency on the waste treatment. PAN nanofiber was prepared by electrospinning method. The precursor solution was dissolved PAN and dispersed TiO2/CNT in N,N-Dimethylformamide (DMF). PAN concentration in the precursor solution was varied at 4.5, 5.5, 6.5, 7.5, and 8.5%. The effect of PAN concentration on the fiber morphology and pore size was discussed. The performance of the resulted membrane on methylene blue (MB) removal was also investigated on a cross-flow system. SEM images of the resulted membrane identified that PAN nanofiber was successfully fabricated with random orientation. The PAN 6.5% showed the highest diffraction intensity of the anatase crystalline phase of TiO2. The additions of CNT and TiO2 lead to the formation of a cluster of beads as confirmed by TEM. Increasing the concentration of PAN increased the fiber diameter from 206 to 506 nm, slightly decreased the surface area and pore size, respectively, from 32.739 to 21.077 m2.g−1 and from 6.38 to 4.75 nm. The PAN/TiO2/CNT nanofibers show type IV of the adsorption-desorption N2 isotherms with the H1 hysteresis loops. Membrane PAN/TiO2/CNT at PAN concentration of 6.5% shows the optimum performance on the MB color removal by maintaining the percentage of rejection (%R) at 90% for 240 min and permeability of 750 LMH. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Catalytic Studies Featuring Palladium(II) Benzoylthiourea Derivative as Catalyst in Sonogashira Reaction Wan M. Khairul; Sarah Liyana Mohd Faisol; Siti Maryam Jasman; Siti Kamilah Che Soh; Mustaffa Shamsuddin
Bulletin of Chemical Reaction Engineering & Catalysis 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.9.3.6880.241-248

Abstract

A benzoylthiourea derivative (LTU) and its metal complexation of palladium(II) chloride (MLTU) has been successfully synthesized and characterized via typical spectroscopic and analytical techniques namely IR, 1H and 13C Nuclear Magnetic Resonance, UV-Visible and Gas Chromatography Flame Ionization Detector (GC-FID). The Infrared spectrum for LTU shows four significant bands of interest namely ν(N-H), ν(C=O), ν(C-N) and ν(C=S) and the values were observed within the range. The 1H NMR spectrum for the compound shows expected protons for N-H at δH 10.95 ppm and δH 11.15 ppm while the 13C NMR spectrum shows resonances of carbonyl (C=O) carbon and thiones (C=S) at δC 168.26 ppm and δC 180.56 ppm, respectively. From UV-Vis spectrum, it shows the presence of n-pi* and pi→pi*electronic transitions which are expected to be attributed from the phenyl ring, carbonyl (C=O) and thiones (C=S) chromophores. Complexation of LTU with palladium(II) chloride was done to afford MLTU which in turn, was tested as homogeneous catalyst in Sonogashira cross-coupling reaction. The reaction was monitored by GC-FID at 6 hours reaction period. The percentage conversion of 4-bromoacetophenone to the coupled product was 75.73% indicated that MLTU can act as an ideal potential catalyst in the Sonogashira reaction. © 2014 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)

Page 2 of 81 | Total Record : 803


Filter by Year

2007 2026


Filter By Issues
All Issue 2026: BCREC Volume 21 Issue 1 Year 2026 (April 2026) (Issue in Progress) 2025: BCREC Volume 20 Issue 4 Year 2025 (December 2025) 2025: BCREC Volume 20 Issue 3 Year 2025 (October 2025) 2025: BCREC Volume 20 Issue 2 Year 2025 (August 2025) 2025: BCREC Volume 20 Issue 1 Year 2025 (April 2025) 2025: Just Accepted Manuscript and Article In Press 2025 2024: BCREC Volume 19 Issue 4 Year 2024 (December 2024) 2024: BCREC Volume 19 Issue 3 Year 2024 (October 2024) 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024) 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024) 2023: BCREC Volume 18 Issue 4 Year 2023 (December 2023) 2023: BCREC Volume 18 Issue 3 Year 2023 (October 2023) 2023: BCREC Volume 18 Issue 2 Year 2023 (August 2023) 2023: BCREC Volume 18 Issue 1 Year 2023 (April 2023) 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022) 2022: BCREC Volume 17 Issue 3 Year 2022 (September 2022) 2022: BCREC Volume 17 Issue 2 Year 2022 (June 2022) 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022) 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021) 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021) 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021) 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021) 2020: BCREC Volume 15 Issue 3 Year 2020 (December 2020) 2020: BCREC Volume 15 Issue 2 Year 2020 (August 2020) 2020: BCREC Volume 15 Issue 1 Year 2020 (April 2020) 2019: BCREC Volume 14 Issue 3 Year 2019 (December 2019) 2019: BCREC Volume 14 Issue 2 Year 2019 (August 2019) 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019) 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018) 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018) 2018: BCREC Volume 13 Issue 1 Year 2018 (April 2018) 2017: BCREC Volume 12 Issue 3 Year 2017 (December 2017) 2017: BCREC Volume 12 Issue 2 Year 2017 (August 2017) 2017: BCREC Volume 12 Issue 1 Year 2017 (April 2017) 2016: BCREC Volume 11 Issue 3 Year 2016 (December 2016) 2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016) 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016) 2015: BCREC Volume 10 Issue 3 Year 2015 (December 2015) 2015: BCREC Volume 10 Issue 2 Year 2015 (August 2015) 2015: BCREC Volume 10 Issue 1 Year 2015 (April 2015) 2014: BCREC Volume 9 Issue 3 Year 2014 (December 2014) 2014: BCREC Volume 9 Issue 2 Year 2014 (August 2014) 2014: BCREC Volume 9 Issue 1 Year 2014 (April 2014) 2013: BCREC Volume 8 Issue 2 Year 2013 (December 2013) 2013: BCREC Volume 8 Issue 1 Year 2013 (June 2013) 2013: BCREC Volume 7 Issue 3 Year 2013 (March 2013) 2012: BCREC Volume 7 Issue 2 Year 2012 (December 2012) 2012: BCREC Volume 7 Issue 1 Year 2012 (June 2012) 2011: BCREC Volume 6 Issue 2 Year 2011 (December 2011) 2011: BCREC Volume 6 Issue 1 Year 2011 (June 2011) 2010: BCREC Volume 5 Issue 2 Year 2010 (December 2010) 2010: BCREC Volume 5 Issue 1 Year 2010 (June 2010) 2009: BCREC Volume 4 Issue 2 Year 2009 (December 2009) 2009: BCREC Volume 4 Issue 1 Year 2009 (June 2009) 2008: BCREC Volume 3 Issue 1-3 Year 2008 (December 2008) 2007: BCREC: Volume 2 Issues 2-3 Year 2007 (October 2007) 2007: BCREC: Volume 2 Issue 1 Year 2007 (June 2007) More Issue