cover
Contact Name
Himawan Tri Bayu Murti Petrus
Contact Email
jurnal.rekpros@ugm.ac.id
Phone
-
Journal Mail Official
jurnal.rekpros@ugm.ac.id
Editorial Address
Jl. Grafika No. 2, Yogyakarta, Indonesia
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Jurnal Rekayasa Proses
ISSN : 1978287X     EISSN : 25491490     DOI : -
Core Subject : Engineering,
Jurnal Rekayasa Proses is an open-access journal published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada as scientific journal to accommodate current topics related to chemical and biochemical process exploration and optimization which covers multi scale analysis from micro to macro and full plant size. Specialization topics covered by Jurnal Rekayasa Proses are: 1. Kinetics and Catalysis Includes simulations and experiments in reaction kinetics, catalyst synthesis and characterization, reactor design, process intensification, microreactor, multiphase reactors, multiscale phenomena, transfer phenomena in multiphase reactors. 2. Separation and Purification System Includes phase equilibrium, mass transfer, mixing and segregation, unit operation, distillation, absorption, extraction, membrane separation, adsorption, ion exchange, chromatography, crystallization and precipitation, supercritical fluids, bioprocess product purification. 3. Process System Engineering Includes simulation, analysis, optimization, and process control on chemical/biochemical processes based on mathematical modeling; multiscale modeling strategy (molecular level, phase level, unit level, and inter-unit integration); design of experiment (DoE); current methods on simulation for model parameter determination. 4. Oil, Gas, and Coal Technology Includes chemical engineering application on process optimization to achieve utmost efficiency in energy usage, natural gas purification, fractionation recovery, CO2 capture, coal liquefaction, enhanced oil recovery and current technology to deal with scarcity in fossil fuels and its environmental impacts. 5. Particle Technology Includes application of chemical engineering concepts on particulate system, which covers phenomenological study on nucleation, particle growth, breakage, and aggregation, particle population dynamic model, particulate fluid dynamic in chemical processes, characterization and engineering of particulate system. 6. Mineral Process Engineering Includes application of chemical engineering concepts in mineral ore processing, liberation techniques and purification, pyrometallurgy, hydrometallurgy, and energy efficiency in mineral processing industries. 7. Material and biomaterial Includes application of chemical engineering concepts in material synthesis, characterization, design and scale up of nano material synthesis, multiphase phenomena, material modifications (thin film, porous materials etc), contemporary synthesis techniques (such as chemical vapor deposition, hydrothermal synthesis, colloidal synthesis, nucleation mechanism and growth, nano particle dispersion stability, etc.). 8. Bioresource and Biomass Engineering Includes natural product processing to create higher economic value through purification and conversion techniques (such as natural dye, herbal supplements, dietary fibers, edible oils, etc), energy generation from biomass, life cycle and economic analysis on bioresource utilization. 9. Biochemistry and Bioprocess Engineering Includes biochemical reaction engineering, bioprocess optimization which includes microorganism selection and maintenance, bioprocess application for waste treatment, bioreactor modeling and optimization, downstream processing. 10. Biomedical Engineering Includes enhancement of cellular productions of enzymes, protein engineering, tissue engineering, materials for implants, and new materials to improve drug delivery system. 11. Energy, Water, Environment, and Sustainability Includes energy balances/audits in industries, energy conversion systems, energy storage and distribution system, water quality, water treatment, water quality analysis, green processes, waste minimization, environment remediation, and environment protection efforts (organic fertilizer production and application, biopesticides, etc.).
Articles 6 Documents
Search results for , issue "Vol 0 No 0.1 (3000): ONLINE FIRST" : 6 Documents clear
Nickel recovery from nickel-containing spent catalyst using atmospheric leaching and oxalate precipitation Widi Astuti; Yuniati, Mutia Dewi; Yuda, Aulia Pertiwi Tri; Sumardi, Slamet; Dewi, Jilda Sofiana; Wanta, Kevin Cleary; Petrus, Himawan Tri Bayu Murti
Jurnal Rekayasa Proses Vol 0 No 0.1 (3000): ONLINE FIRST
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.17589

Abstract

A study has been done to investigate and optimize the recovery of nickel from nickel-containing spent catalyst through sulfuric acid (1 - 2 mol/L) atmospheric leaching in different operation conditions. From the leaching experiments, it was possible to extract 77.95% nickel under the conditions of 2 mol/L H2SO4, reaction time of 5 h, 5% pulp density, and temperature of 80°C. In the next step Ni was selectively precipitated from a sulfuric acid-leached solution using 1 mol/L oxalic acid. The nickel content in the product was 97.29% Ni. Based on the study, sulfuric acid was found to be a suitable leaching agent to extract Ni from the nickel-containing spent catalyst. The study also indicated the effective extraction and recovery of nickel which was well supported by characterization studies using XRD technique.
Dual-synergistic effects of citric acid on atmospheric leaching of manganese ores Widi Astuti; Rofiek Mufakhir, Fika; Iman Supriyatna, Yayat; Daulay, Amru; Setyadji, Moch.; Sofiana Dewi, Jilda
Jurnal Rekayasa Proses Vol 0 No 0.1 (3000): ONLINE FIRST
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.17590

Abstract

In the current study, a leaching of manganese from Indonesian manganese ores using citric acid as leaching reagent without the addition of reducing agent was investigated. Citric acid was being used as a leaching reagent and reducing agent at same time due to its reducing power. Several leaching parameters were investigated to obtain the optimum condition of citric acid leaching of manganese from those manganese ores. Low grade manganese ores from two mining areas in Indonesia contained 36.77% Mn (WK ore) and 12.5% (TG ore) with different mineral types can be leached using citric acid as leaching reagent without addition of reducing agent. The optimum manganese recovery was obtained at around 76% and 69% respectively for WK ore and TG ore with citric acid of 1M, 5% of pulp density, 150 rpm of shaker speed, 30oC of leaching temperature, 1 hour of leaching period, and <75 µm of ore particle size. This condition was also selective for iron recovery leaching. This experiment proves that citric acid has a dual-synergistic effect as an effective leaching reagent and reducing agent at the same time for manganese leaching from manganese ores.
Pengaruh kalsinasi terhadap karakteristik mesoporous nanosilica (MSN) dari sludge geothermal dan performanya dalam sistem drug loading kurkumin Angelia, Annasthasya Milleni; Ramadhany, Putri; Kristijarti, Anastasia Prima; Astuti, Widi; Petrus, Himawan Tri Bayu Murti; Wanta, Kevin Cleary
Jurnal Rekayasa Proses Vol 0 No 0.1 (3000): ONLINE FIRST
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.20154

Abstract

This study was conducted to study the effect of calcination on the characteristics of mesoporous nanosilica (MSN) from sludge geothermal waste and its performance in drug loading curcumin. The preparation of MSN was carried out using the sol-gel method using polyvinylpyrrolidone (PVP) surfactant. The removal of surfactants from MSN was processed using the calcination method, where the muffle furnace was adjusted at a temperature of 600oC for 7 hours. The formed MSN samples were then characterized using XRF, XRD, FTIR, and BET instruments. Meanwhile, the adsorption capacity of MSN to curcumin before and after calcination was measured using a 600 ppm curcumin solution. This drug loading process lasted for 6 hours at room temperature. The study's results showed that MSN's composition and crystallinity structure did not change significantly due to the calcination process. However, the functional groups of MSN changed after calcination. The pore size of MSN after calcination also decreased from 4.31 (before calcination) to 4.02 nm. This change in MSN characteristics also affects the performance of curcumin drug loading. This can be seen based on the efficiency of curcumin adsorption, where calcined MSN can adsorb curcumin by 32.92%, while for uncalcined MSN, the adsorption efficiency is 25.64%. Based on the results of this study, the calcination process has a positive effect on the drug loading ability of MSNs.
Co-firing briquette fuel from coal waste and palm kernel shells: Optimization and validation Aji, Salomo Pranata; Afifah, Dian Ayu; Silmi, Fadian Farisan; Cendekia, Devy; Wulandari, Yeni Ria; Ramandani, Adityas Agung; Shintawati
Jurnal Rekayasa Proses Vol 0 No 0.1 (3000): ONLINE FIRST
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.16419

Abstract

The low-rank coal is increasing every year but still slightly exploited by the industry, due to it being caused by the low-calorie value of the low-rank coal waste. Therefore, the mixture of other biomass is expected to raise the calorie value. This approach could potentially make the low-rank coal more economically viable for use in various industries, especially as a source of energy. Additionally, further research and development in this area could lead to more efficient and sustainable energy production methods. The study uses the Central Composite Design with ratio of low-rank coal waste and palm kernel shells of 40%: 60%, 60%: 40%, and 80%: 20% and variations of the glue starch (5 to 7%), which have been optimized and validated using the Response Surface Method approach. The results of the study showed volatile matter, fixed carbon, and calorie values of 61.43% to 71.69%, 16.56% to 26.98%, and 5190.44 to 6330.40 kcal/g, respectively. The results also demonstrated that the glue with 6% variation showed the highest fixed carbon content and calorie value in comparison to the other variations. The optimum of concentration of low-rank coal and palm kernel shell for co-firing of 80: 20% with 5% glue addition resulting in a volatile matter, fixed carbon, calorie value, flame capacity, flammability, of 54.41%, 33.39%, 6192.123 kcal/g, 14.12 min, and 0.052 g/min, respectively. The validation process also met the requirements for SNI 01-6235-2000 and SNI 8675-2018. Overall, the study concluded that the co-firing of low-rank coal waste and palm kernel shell with glue starch can result in an optimized fuel mixture with high performance characteristics. These findings are significant for industries looking to improve their energy efficiency and reduce emissions.
Analisis CFD unjuk kerja kolektor photovoltaic/thermal berdasarkan metode pendinginan permukaan atas dan bawah Nalis, Amrizal; Nugraha, Yulian; Irsyad, Muhammad; Yonanda, Ahmad; Setiawan, Ahmad Adi
Jurnal Rekayasa Proses Vol 0 No 0.1 (3000): ONLINE FIRST
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.18652

Abstract

This research analyses the effect of radiation and fluid mass flow rate variations on the thermal performance of Photovoltaic/Thermal (PV/T) collectors based on top-surface cooling and bottom-surface cooling methods. This research uses the ANSYS Fluent simulation method based on radiation variations of 500 W/m2, 750 W/m2, 1000 W/m2, 1250 W/m2 and fluid mass flow rates of 0.02 kg/s, 0.04 kg/s, 0.06 kg/s. The research results show that cooling the top surface is proven to be more effective than cooling the bottom surface. The highest temperature difference between top and bottom cooling for PV surface temperature is 2.64 oC at a mass flow rate of 0.04 kg/s and radiation of 1250 W/m2, meanwhile, the difference in average working fluid temperature is lower than 1 oC. For a three-fold increase in fluid flow rate from 0.02 kg/s to 0.06 kg/s, the respective temperature decrease for the PV surface and working fluid is 7% and 14% respectively for both types of working fluid flow.
Different concentrations and solubility of active lime (CaCO3) on the quality of indigo paste from Indigofera longiracemosa Boiv.ex. Baill Muzzazinah; Azmi, Hilmi Uulul
Jurnal Rekayasa Proses Vol 0 No 0.1 (3000): ONLINE FIRST
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.17882

Abstract

This research aims to determine the effect of differences in concentration and solubility of active lime (25% and 35% CaCO3 solution, 25% and 35% CaCO3 supernatant) on the quality of indigo (Indigofera longiracemosa) dye paste. The method for making indigo dye paste includes the process of soaking fresh leaves and twigs of I. longiracemosa in water, fermentation with an active lime solution of CaCO3 with varying concentrations and solubility, settling, and filtration to obtain indigo paste. Several tests were carried out to evaluate the quality of the color in the fabric and the indican content in the indigo produced. The indican content that was successfully tested showed the highest results in the paste treated with 25% CaCO3. Color quality tests on fabrics show that fabrics dyed with indigo paste with 35% CaCO3 solution treatment have the best color fastness to sweat with an average value of 4. The color fastness test to heat on fabric dyed with indigo paste with all types of treatment received a score of 4-5, which indicates excellent color fastness, does not fade, and does not stain other fabrics. The differences in concentration and solubility of CaCO3 solution result in variations in the physical characteristics of indigo paste, the colors produced on fabric, the indican content, as well as the colorfastness to sweat and heat.

Page 1 of 1 | Total Record : 6


Filter by Year

0000


Filter By Issues
All Issue Vol 19 No 1 (2025): Volume 19, Number 1, 2025 Vol 18 No 2 (2024): Volume 18, Number 2, 2024 Vol 18 No 1 (2024): Volume 18, Number 1, 2024 Vol 17 No 2 (2023): Volume 17, Number 2, 2023 Vol 17 No 1 (2023): Volume 17, Number 1, 2023 Vol 16 No 2 (2022): Volume 16, Number 2, 2022 Vol 16 No 1 (2022): Volume 16, Number 1, 2022 Vol 15 No 2 (2021): Volume 15, Number 2, 2021 Vol 15 No 1 (2021): Volume 15, Number 1, 2021 Vol 14 No 2 (2020): Volume 14, Number 2, 2020 Vol 14 No 1 (2020): Volume 14, Number 1, 2020 Vol 13 No 2 (2019): Volume 13, Number 2, 2019 Vol 13 No 1 (2019): Volume 13, Number 1, 2019 Vol 12 No 2 (2018): Volume 12, Number 2, 2018 Vol 12 No 1 (2018): Volume 12, Number 1, 2018 Vol 11 No 2 (2017): Volume 11, Number 2, 2017 Vol 11 No 1 (2017): Volume 11, Number 1, 2017 Vol 10 No 2 (2016): Volume 10, Number 2, 2016 Vol 10 No 1 (2016): Volume 10, Number 1, 2016 Vol 9 No 2 (2015): Volume 9, Number 2, 2015 Vol 9 No 1 (2015): Volume 9, Number 1, 2015 Vol 8 No 2 (2014): Volume 8, Number 2, 2014 Vol 8 No 1 (2014): Volume 8, Number 1, 2014 Vol 7 No 2 (2013): Volume 7, Number 2, 2013 Vol 7 No 1 (2013): Volume 7, Number 1, 2013 Vol 6 No 2 (2012): Volume 6, Number 2, 2012 Vol 6 No 1 (2012): Volume 6, Number 1, 2012 Vol 5 No 2 (2011): Volume 5, Number 2, 2011 Vol 5 No 1 (2011): Volume 5, Number 1, 2011 Vol 4 No 2 (2010): Volume 4, Number 2, 2010 Vol 4 No 1 (2010): Volume 4, Number 1, 2010 Vol 3 No 2 (2009): Volume 3, Number 2, 2009 Vol 3 No 1 (2009): Volume 3, Number 1, 2009 Vol 2 No 2 (2008): Volume 2, Number 2, 2008 Vol 2 No 1 (2008): Volume 2, Nomor 1, 2008 Vol 1 No 1 (2007): Volume 1, Number 1, 2007 Vol 0 No 0.1 (3000): ONLINE FIRST More Issue