cover
Contact Name
Himawan Tri Bayu Murti Petrus
Contact Email
jurnal.rekpros@ugm.ac.id
Phone
-
Journal Mail Official
jurnal.rekpros@ugm.ac.id
Editorial Address
Jl. Grafika No. 2, Yogyakarta, Indonesia
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Jurnal Rekayasa Proses
ISSN : 1978287X     EISSN : 25491490     DOI : -
Core Subject : Engineering,
Jurnal Rekayasa Proses is an open-access journal published by Chemical Engineering Department, Faculty of Engineering, Universitas Gadjah Mada as scientific journal to accommodate current topics related to chemical and biochemical process exploration and optimization which covers multi scale analysis from micro to macro and full plant size. Specialization topics covered by Jurnal Rekayasa Proses are: 1. Kinetics and Catalysis Includes simulations and experiments in reaction kinetics, catalyst synthesis and characterization, reactor design, process intensification, microreactor, multiphase reactors, multiscale phenomena, transfer phenomena in multiphase reactors. 2. Separation and Purification System Includes phase equilibrium, mass transfer, mixing and segregation, unit operation, distillation, absorption, extraction, membrane separation, adsorption, ion exchange, chromatography, crystallization and precipitation, supercritical fluids, bioprocess product purification. 3. Process System Engineering Includes simulation, analysis, optimization, and process control on chemical/biochemical processes based on mathematical modeling; multiscale modeling strategy (molecular level, phase level, unit level, and inter-unit integration); design of experiment (DoE); current methods on simulation for model parameter determination. 4. Oil, Gas, and Coal Technology Includes chemical engineering application on process optimization to achieve utmost efficiency in energy usage, natural gas purification, fractionation recovery, CO2 capture, coal liquefaction, enhanced oil recovery and current technology to deal with scarcity in fossil fuels and its environmental impacts. 5. Particle Technology Includes application of chemical engineering concepts on particulate system, which covers phenomenological study on nucleation, particle growth, breakage, and aggregation, particle population dynamic model, particulate fluid dynamic in chemical processes, characterization and engineering of particulate system. 6. Mineral Process Engineering Includes application of chemical engineering concepts in mineral ore processing, liberation techniques and purification, pyrometallurgy, hydrometallurgy, and energy efficiency in mineral processing industries. 7. Material and biomaterial Includes application of chemical engineering concepts in material synthesis, characterization, design and scale up of nano material synthesis, multiphase phenomena, material modifications (thin film, porous materials etc), contemporary synthesis techniques (such as chemical vapor deposition, hydrothermal synthesis, colloidal synthesis, nucleation mechanism and growth, nano particle dispersion stability, etc.). 8. Bioresource and Biomass Engineering Includes natural product processing to create higher economic value through purification and conversion techniques (such as natural dye, herbal supplements, dietary fibers, edible oils, etc), energy generation from biomass, life cycle and economic analysis on bioresource utilization. 9. Biochemistry and Bioprocess Engineering Includes biochemical reaction engineering, bioprocess optimization which includes microorganism selection and maintenance, bioprocess application for waste treatment, bioreactor modeling and optimization, downstream processing. 10. Biomedical Engineering Includes enhancement of cellular productions of enzymes, protein engineering, tissue engineering, materials for implants, and new materials to improve drug delivery system. 11. Energy, Water, Environment, and Sustainability Includes energy balances/audits in industries, energy conversion systems, energy storage and distribution system, water quality, water treatment, water quality analysis, green processes, waste minimization, environment remediation, and environment protection efforts (organic fertilizer production and application, biopesticides, etc.).
Articles 5 Documents
Search results for , issue "Vol 5 No 1 (2011): Volume 5, Number 1, 2011" : 5 Documents clear
Pembuatan resin phenol formaldehyde sebagai prekursor untuk preparasi karbon berpori: pengaruh jenis turunan phenol terhadap karakteristik resin dan karbon Nuryati Nuryati; Imam Prasetyo
Jurnal Rekayasa Proses Vol 5 No 1 (2011): Volume 5, Number 1, 2011
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.1896

Abstract

Phenolic resin is the product of polycondensation between phenol (P) with formaldehyde (F). This research aims to study synthesis of phenol formaldehyde resin modified by adding the reactant in the form of phenol derivatives, such as tertiary butyl phenol (T), resorcinol (R) and hydroquinone (H). The product is applied as precursor for making porous carbon. Reaction of phenol formaldehyde was carried out in a stirred reactor at temperature of 90oC for 1 to 3 hours. KOH was used as catalyst. Para Toluene Sulfonic Acid (pTSA) was added to the resin as a cross linking catalyst. Carbonization process was carried out by pyrolysis at the temperature of 800oC for 1 hour. The results showed that PF and PFT resins had high density of 1.18g/cm3 . PF resin had the hardness value of 17.2 g/mm2 . The iodine number of the PF and PFT carbon was 862.3 mg/g and 794.16 mg/g, respectively. The surface area of the PF and PFT carbons were 836.7m2 /g and 702.7m2 /g, respectively.
Analisis eksperimental fluks kalor pada celah sempit anulus berdasarkan variasi suhu air pendingin menggunakan bagian uji HeaTiNG-01 Bambang Riyono; Indarto Indarto; Sinta Tri Habsari; Mulya Juarsa; Kiswanta Kiswanta; Ainur R.; Edy S.; Joko P. W.; Ismu H.
Jurnal Rekayasa Proses Vol 5 No 1 (2011): Volume 5, Number 1, 2011
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.1895

Abstract

Experiment to investigate the mechanism of boiling heat transfer in a narrow gap on severe accident scenarios of TMI-2 nuclear power plant is necessary to develop the understanding of the related accident management.The present study aimed to obtain heat flux value and critical heat flux (CHF) during boiling heat transfer process in a narrow gap of annulus. The study was experimentally carried out using the HeaTiNG 01 test with water as cooling fluid which temperature was varied at 75°C, 85°C dan 95°C. The rod was heated to 650°C. The boiling process during cooling was investigated by recording the transient temperature of the heated rod. The data was used to calculate the heat flux and wall superheat which results were represented in a boiling curve. The experimental results showed that the CHF value of the cooling media at 75°C was lower compared with that of at 85°C and 95°C. It was found that the values of CHF at 85°C and 95°C were close. The maximum CHF value at 75°C was 230 kW/m2 , while at 95°C was 282 kW/m2 . The CHF values at various position of heated rod was found to follow polynomial correlation. By comparing the boiling film areas from experimental results with that of Bromley correlation, it was concluded that boiling process in a narrow gap could not categorized as pool boiling process
Performa sistem autocascade dengan menggunakan karbondioksida sebagai refrigeran campuran Nasruddin Nasruddin; Ardi Yuliono; Darwin Rio Budi Syaka
Jurnal Rekayasa Proses Vol 5 No 1 (2011): Volume 5, Number 1, 2011
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.1894

Abstract

Most refrigeration systems today use refrigerant which causes ozone depletion or global warming. Therefore, alternative natural refrigerants are highly required. One potential candidate is CO2. However, high pressure of CO2 limits its application in conventional refrigeration system. To solve this problem, a low investment cost of autocascade refrigeration system is used. This research investigated autocascade refrigeration system using a mixture of CO2 (R744) and R12, in comparison with environmentally friendly refrigerant mixture of CO2 (R744) and R600a. The parameters analyzed were (1) evaporation temperature, (2) condensation temperature, (3) suction temperature, (4) discharge temperature, (5) suction pressure, and (5) discharge pressure. The experiment results showed that an increase of CO2 concentration by 10% or more in the autocascade refrigeration system could raise system pressure. Therefore, the increase of CO2 pressure should be within the allowable limit of the working pressure of the compressor.
Studi eksperimental pengendalian korosi pada aluminium 2024-T3 di lingkungan air laut melalui penambahan inhibitor kalium kromat (K2CrO4) Waris Wibowo; Mochammad Noer Ilman
Jurnal Rekayasa Proses Vol 5 No 1 (2011): Volume 5, Number 1, 2011
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.1893

Abstract

Aluminium alloy 2024-T3 is widely used in manufacturing industries such as aircraft, automotive and ship industries due to its light weight and good mechanical properties. However, aluminium alloy 2024-T3 is suffered from corrosion attack when it is operated in corrosive environment such as sea water. One of the corrosion control methods is inhibitor addition. The present investigation aimed to study the effect of K2CrO4 inhibitor on controlling corrosion rate in sea water. In this research, K2CrO4 was added to sea water environment with various concentrations, i.e. 0.1, 0.3 and 0.5%. Subsequently corrosion rates were measured using three-electrode potential technique with saturated calomel (Hg2Cl2) electrode as a reference electrode whereas the auxiliary electrode was platinum (Pt). Additional experiments including compositional analysis, microstructural examination, hardness measurement and tensile test were also carried out to gain better understanding to the mechanism in which corrosion attacks aluminium alloy 2024-T3. Experimental results showed that corrosion rate of aluminium alloy 2024-T3 in sea water without inhibitor is around 0.0216 mm/year. The additions of K2CrO4 inhibitor tended to reduce the corrosion rate until a minimum value was obtained, typically 0.0134 mm/year (or 38% decrease) as the amount of K2CrO4 was 0.5%. The type of corrosion observed in this investigation was pitting corrosion as a result of local damage in passive film. Inhibitor seemed to form thin protective film on metal surface hence reducing corrosion rate.
Kinetika reaksi alkyd resin termodifikasi minyak jagung dengan asam phtalat anhidrat Heri Heriyanto; Rochmadi Rochmadi; Arief Budiman
Jurnal Rekayasa Proses Vol 5 No 1 (2011): Volume 5, Number 1, 2011
Publisher : Jurnal Rekayasa Proses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jrekpros.1892

Abstract

Esterification of phthalic anhydrate with monoglyceride is a condensation reaction to form a linear chain polymer. The present work aimed at investigating reaction kinetics of alkyd resin modified with corn oil in the absence of catalyst. The work consisted of two steps i.e. alcoholysis and esterification. In the alcoholysis step, corn oil and glycerol were brought into reaction with a molar ratio of 1:2 at 250°C. Every 30 minutes during 3 hour reaction, reaction products were sampled to analyse the remaining free glycerol by iodometry method (FBI-AO2-03). In the esterification step, phthalic anhydrate was put in the batch reactor with a glycerol-phthalic anhydrate molar of 3:2. Samples were taken and the hydroxyl ions were analysed by acetate anhydrate method. The variables investigated in the present work were reaction temperatures varied from 230°C to 260°C and equivalent OH/COOH ratio from 1 to 1.25. Experimental results showed that alcoholysis of corn oil and glycerol could be carried out in a temperature range of 230°C to 260°C without the presence of catalyst. The effect of temperature on the reaction rate constant of monoglyceride and phthalic ester formation could be respectively written in the Arrhenius correlations as follows: k1 = 1.4647.104 exp (− 8237.7/???? ) g/mgeq.min k4 = 2.1398.109 exp (− 14142/???? ) g/mgeq.min

Page 1 of 1 | Total Record : 5


Filter by Year

2011 2011


Filter By Issues
All Issue Vol 19 No 2 (2025): Volume 19, Number 2, 2025 Vol 19 No 1 (2025): Volume 19, Number 1, 2025 Vol 18 No 2 (2024): Volume 18, Number 2, 2024 Vol 18 No 1 (2024): Volume 18, Number 1, 2024 Vol 17 No 2 (2023): Volume 17, Number 2, 2023 Vol 17 No 1 (2023): Volume 17, Number 1, 2023 Vol 16 No 2 (2022): Volume 16, Number 2, 2022 Vol 16 No 1 (2022): Volume 16, Number 1, 2022 Vol 15 No 2 (2021): Volume 15, Number 2, 2021 Vol 15 No 1 (2021): Volume 15, Number 1, 2021 Vol 14 No 2 (2020): Volume 14, Number 2, 2020 Vol 14 No 1 (2020): Volume 14, Number 1, 2020 Vol 13 No 2 (2019): Volume 13, Number 2, 2019 Vol 13 No 1 (2019): Volume 13, Number 1, 2019 Vol 12 No 2 (2018): Volume 12, Number 2, 2018 Vol 12 No 1 (2018): Volume 12, Number 1, 2018 Vol 11 No 2 (2017): Volume 11, Number 2, 2017 Vol 11 No 1 (2017): Volume 11, Number 1, 2017 Vol 10 No 2 (2016): Volume 10, Number 2, 2016 Vol 10 No 1 (2016): Volume 10, Number 1, 2016 Vol 9 No 2 (2015): Volume 9, Number 2, 2015 Vol 9 No 1 (2015): Volume 9, Number 1, 2015 Vol 8 No 2 (2014): Volume 8, Number 2, 2014 Vol 8 No 1 (2014): Volume 8, Number 1, 2014 Vol 7 No 2 (2013): Volume 7, Number 2, 2013 Vol 7 No 1 (2013): Volume 7, Number 1, 2013 Vol 6 No 2 (2012): Volume 6, Number 2, 2012 Vol 6 No 1 (2012): Volume 6, Number 1, 2012 Vol 5 No 2 (2011): Volume 5, Number 2, 2011 Vol 5 No 1 (2011): Volume 5, Number 1, 2011 Vol 4 No 2 (2010): Volume 4, Number 2, 2010 Vol 4 No 1 (2010): Volume 4, Number 1, 2010 Vol 3 No 2 (2009): Volume 3, Number 2, 2009 Vol 3 No 1 (2009): Volume 3, Number 1, 2009 Vol 2 No 2 (2008): Volume 2, Number 2, 2008 Vol 2 No 1 (2008): Volume 2, Nomor 1, 2008 Vol 1 No 1 (2007): Volume 1, Number 1, 2007 More Issue