cover
Contact Name
Pinto Anugrah
Contact Email
pinto@msdinstitute.org
Phone
-
Journal Mail Official
journal.pec@msdinstitute.org
Editorial Address
Perum. Parak Karakah Regency B1, Padang, West Sumatra, Indonesia 25163
Location
Kota padang,
Sumatera barat
INDONESIA
Journal of Power, Energy, and Control
Published by MSD Institute
ISSN : -     EISSN : 30478804     DOI : -
Journal of Power, Energy, and Control (PEC) mainly focuses on power engineering, energy engineering, renewable energy, control systems in energy application, and various sustainable energy applications. PEC welcomes the submission of high quality original research papers, review papers, and case study reports.
Articles 21 Documents
Control Strategy Assessment: PID and Fuzzy-PID for Compound DC Motor Systems Sam-Okyere, Yaw Amankrah; Osei-Kwame, Emmanuel; Issaka, Dienatu; Arkorful, Isaac Papa Kwesi
Journal of Power, Energy, and Control Vol. 2 No. 2 (2025)
Publisher : MSD Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62777/pec.v2i2.74

Abstract

Compound DC motors, prized for their high torque and speed in industrial applications, demand robust control under nonlinear conditions. This study advances the field of Adaptive Neuro-Fuzzy Interface (ANFIS) by comparing a Ziegler-Nichols-tuned Proportional-Integral-Derivative (PID) controller with a novel ANFIS-PID controller for a compound DC motor. Unlike prior work, the research focuses on the unique dynamics of compound motors for real-time applications. Using MATLAB Simulink simulations. Performance was assessed via overshoot, rise time, settling time, and steady-state error under no-load and full-load conditions. The PID controller yielded 11.789% overshoot, 1.140s rise time, and 2.251s settling time, while the ANFIS-PID achieved 6.989% overshoot, 0.951s rise time, and 1.962s settling time, with a 50% lower steady-state error. These results, validated across 10 runs (p < 0.05), highlight the ANFIS-PID’s superior adaptability to the motor’s series-shunt dynamics, offering a 40.7% overshoot reduction.

Page 3 of 3 | Total Record : 21