cover
Contact Name
Ahmad Azhari
Contact Email
simple@ascee.org
Phone
-
Journal Mail Official
simple@ascee.org
Editorial Address
Jl. Raya Janti No.130B, Karang Janbe, Karangjambe, Kec. Banguntapan, Kabupaten Bantul, Daerah Istimewa Yogyakarta 55198
Location
Kab. bantul,
Daerah istimewa yogyakarta
INDONESIA
Signal and Image Processing Letters
ISSN : 27146669     EISSN : 27146677     DOI : 10.31763/simple
The journal invites original, significant, and rigorous inquiry into all subjects within or across disciplines related to signal processing and image processing. It encourages debate and cross-disciplinary exchange across a broad range of approaches.
Articles 5 Documents
Search results for , issue "Vol 1, No 2 (2019)" : 5 Documents clear
A Splicing Technique for Image Tampering using Morphological Operations Gaffar, Achmad Fanany Onnilita; Supriadi, Supriadi; Saputra, Arief Bramanto Wicaksono; Malani, Rheo; Wajiansyah, Agusma
Signal and Image Processing Letters Vol 1, No 2 (2019)
Publisher : Association for Scientific Computing Electrical and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/simple.v1i2.4

Abstract

Image tampering is one part of the field of image editing or manipulation that changes certain parts of the graphic content of a given image. There are several techniques commonly used for image tampering, such as splicing, copy-move, retouching, etc. Splicing is a type of image tampering technique that combines two different images, replacing particular objects, skewing, rotation, etc. This study applies the splicing technique to image tampering using morphological operations.  Morphology is a collection of image processing operations that process images based on their shape. The aim of this study is to replace particular objects in an original image with other objects that are similar to another selected image.  In this study, we try to replace the ball object in the original image with another ball object from another image
K-Nearest Neighbor Classification for Detection of The Effect of Game Addiction on Cognitive Activity in The Late Adolescent Phase based on Brainwave Signals Azhari, Ahmad; Swara, Ajie Kurnia Saputra
Signal and Image Processing Letters Vol 1, No 2 (2019)
Publisher : Association for Scientific Computing Electrical and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/simple.v1i2.5

Abstract

World Health Organization (WHO) has determined that Gaming disorder is included in the International Classification of Diseases (ICD-11). The behavior of playing digital games included in the Gaming disorder category is characterized by impaired control of the game, increasing the priority given to the game more than other activities insofar as the game takes precedence over other daily interests and activities, and the continuation or improvement of the game despite negative consequences. The influence of video games on children's development has always been a polemic because in adolescence not only adopts cognitive abilities in learning activities, but also various strategies related to managing activities in learning, playing and socializing to improve cognitive abilities. Therefore, this research was conducted to analyze the cognitive activity of late teens in learning and playing games based on brainwave signals and to find out the impact of games on cognitive activity in adolescents. Prediction of the effect of the game on cognitive activity will be done by applying Fast Fourier Transform for feature extraction and K-Nearest Neighbor for classification. The results of the expert assessment showed the percentage of respondents with superior cognitive category but game addiction was 63.3% and respondents with cognitive categorization were average but were addicted by 36.6%. The percentage of accuracy produced by the system shows 80% in games and cognitive by using k values of 1, 6, and 7. The correlation test results show a percentage of 0.089, so it is concluded that there is no influence of the game on cognitive activity in late adolescents.
Comparative Study of KNN, SVM and SR Classifiers in Recognizing Arabic Handwritten Characters Employing Feature Fusion Huque, Abu Sayeed Ahsanul; Haque, Mainul; Khan, Haidar A.; Al Helal, Abdullah; Ahmed, Khawza I.
Signal and Image Processing Letters Vol 1, No 2 (2019)
Publisher : Association for Scientific Computing Electrical and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/simple.v1i2.1

Abstract

This paper evaluates and compares the performance of K-Nearest Neighbors (KNN), Support Vector Machine (SVM) and Sparse Representation Classifier (SRC) for recognition of isolated Arabic handwritten characters. The proposed framework converts the gray-scale character image to a binary image through Otsu thresholding, and size-normalizes the binary image for feature extraction. Next, we exploit image down-sampling and the histogram of image gradients as features for image classification and apply fusion (combination) of these features to improve the recognition accuracy. The performance of the proposed system is evaluated on Isolated Farsi/Arabic Handwritten Character Database (IFHCDB)-a large dataset containing gray scale character images. Experimental results reveal that the histogram of gradient consistently outperforms down-sampling based features, and the fusion of these two feature sets achieves the best performance. Likewise, SRC and SVM both outperform KNN, with the latter performing the best among the three. Finally, we achieved a commanding accuracy of 93.71% in character recognition with fusion of features classified by SVM, where 92.06% and 91.10% is achieved by SRC and KNN respectively.
Kalman Filter for Noise Reducer on Sensor Readings Ma'arif, Alfian; Iswanto, Iswanto; Nuryono, Aninditya Anggari; Alfian, Rio Ikhsan
Signal and Image Processing Letters Vol 1, No 2 (2019)
Publisher : Association for Scientific Computing Electrical and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/simple.v1i2.2

Abstract

Most systems nowadays require high-sensitivity sensors to increase its system performances. However, high-sensitivity sensors, i.e. accelerometer and gyro, are very vulnerable to noise when reading data from environment. Noise on data-readings can be fatal since the real measured-data contribute to the performance of a controller, or the augmented system in general. The paper will discuss about designing the required equation and the parameter of modified Standard Kalman Filter for filtering or reducing the noise, disturbance and extremely varying of sensor data. The Kalman Filter equation will be theoretically analyzed and designed based on its component of equation. Also, some values of measurement and variance constants will be simulated in MATLAB and then the filtered result will be analyzed to obtain the best suitable parameter value. Then, the design will be implemented in real-time on Arduino to reduce the noise of IMU (Inertial Measurements Unit) sensor reading. Based on the simulation and real-time implementation result, the proposed Kalman filter equation is able to filter signal with noises especially if there is any extreme variation of data without any information available of noise frequency that may happen to sensor- reading. The recommended ratio of constants in Kalman Filter is 100 with measurement constant should be greater than process variance constant.
K-Fold Cross Validation for Selection of Cardiovascular Disease Diagnosis Features by Applying Rule-Based Datamining Normawati, Dwi; Ismi, Dewi Pramudi
Signal and Image Processing Letters Vol 1, No 2 (2019)
Publisher : Association for Scientific Computing Electrical and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/simple.v1i2.3

Abstract

Coronary heart disease occurs when atheroclerosis inhibits blood flow to the heart muscle in the coronary arteries. This disease is often the cause of human death. The method for diagnosing coronary heart disease that is often a doctor's referral is coronary angiography, but it is invasive, expensive, and high-risk. This study aims to analyze the effect of k-Fold Cross-Validation (CV) on the dataset to create features based on the rules used to diagnose coronary heart disease. This study uses the Cleveland heart disease dataset, where feature selection is performed using a medical expert-based method (MFS) and a computer-based method, Variable Precision Rough Set (VPRS). Evaluation of the classification performance using the k-fold 10-fold, 5-fold and 3-fold methods. The results showed the number of different attribute selection results in each fold, both for the VPRS and MFS methods, with the highest accuracy score in the VPRS method 76.34% with k = 5, while the MTF accuracy was 71.281% with k = 3.

Page 1 of 1 | Total Record : 5