Mechatronics, Electrical Power, and Vehicular Technology
Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular technology as well as related topics. All papers are peer-reviewed by at least two referees. MEV is published and imprinted by Research Center for Electrical Power and Mechatronics - Indonesian Institute of Sciences and managed to be issued twice in every volume. For every edition, the online edition is published earlier than the print edition.
Articles
23 Documents
Search results for
, issue
"Vol 3, No 1 (2012)"
:
23 Documents
clear
Magnetic Simulation and Analysis of Radial Flux Permanent Magnet Generator using Finite Element Method
Irasari, Pudji;
Alam, Hilman Syaeful;
Kasim, Muhammad
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1012.457 KB)
|
DOI: 10.14203/j.mev.2012.v3.23-30
This paper discusses magnetic simulation and analysis of radial flux permanent magnet generator (PMG) using finite element method (FEM) by utilizing open source software FEMM 4.2. The specification of generator is 25 V, 28 A, 3 phase, 300 rpm. The analyzed magnetic flux was in the air gap, stator teeth and slots to find out the distribusian pattern and its fluctuation. The simulations were conducted in no-load and nominal load (28 A) conditions. Furthermore the maximum flux density of simulation (Bg(sim)) was used to calculate phase voltage Eph to find out the magnitude of generated electromotive force (EMF). The calculation results were presented as voltage vs. rotation graph in no-load condition and voltage vs. current graph in nominal load condition. Both graphs were validated with Eph of experiment result (Eph(exp)) and Eph that the value of Bg obtained from analytical calculation (Eph(calc)). The final results showed that in no-load condition, Eph graph with Bg(sim) (Eph(sim)) was close to Eph(exp) and Eph(calc). The error rate with respect to the experiment was 6,9%. In nominal load condition, Eph(sim) graph almost coincides with Eph(calc.) graph, with the voltage drop of both was 0,441 V. Both graphs however were far different from Eph(exp) graph, which has 9 V of voltage drop. The overall results demonstrated that magnetic distribution pattern presented by FEM was very helpful to avoid magnetic flux accumulation in a particular segment. Besides Bg(sim) facilitated to predict the value of Eph.
The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine
Nur, Arifin;
Putrasari, Yanuandri;
Reksowardojo, Iman Kartolaksono
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (449.536 KB)
|
DOI: 10.14203/j.mev.2012.v3.49-56
The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices were mounted on the exhaust pipe. The test of fuel variations started from 100% diesel fuel (D100) to 2.5% (DE2.5), 5% (DE5), 7.5% (DE7.5), and 10% (DE10) ethanol additions. Performance test was conducted at 1500 rpm with load variations from 0 to 60 Nm by increasing the load on each level by 10 Nm. The addition of 5% ethanol to diesel (DE5) increased the average pressure of combustion chamber indication to 48% as well as reduced the specific fuel consumption to 9.5%. There were better exhaust emission characteristics at this mixture ratio than diesel engine which used pure diesel fuel (D100), the reduction of CO to 37%, HC to 44% and opacity to 15.9%.
Front Cover MEV Vol 03 Iss 1
Atmaja, Tinton Dwi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.14203/j.mev.2012.v3.%p
Design and Implementation of Anti-windup PI Control on DC-DC Bidirectional Converter for Hybrid Vehicle Applications
Romdlony, Muh. Zakiyullah;
Amin, Amin
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (884.259 KB)
|
DOI: 10.14203/j.mev.2012.v3.31-38
Well-regulated DC bus voltage is the important point to guarantee the power demand in hybrid vehicle applications. Voltage regulation can be achieved with control method that build switching signal on DC-DC converter. This paper describes design and small scale experimental results of bus voltage regulation control of the DC-DC bidirectional converter with battery and supercapacitor as energy source. The control system consists of two control loops, the outer loop that get DC bus voltage feedback using PI anti-windup back calculation control method. This outer loop will generate a reference current for the inner loop that implement hysteresis control. The inner control loop will compare that reference curent with the source current obtained from the current sensor. Simulation and experimental results show that bus voltage is well-regulated under the load changes with 1% voltage ripple.
Direction and Policies Needed to Support Hybrid Electric Car Research
Subekti, Ridwan Arief;
Hartanto, Agus;
Susanti, Vita
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (160.278 KB)
|
DOI: 10.14203/j.mev.2012.v3.1-8
The rising number of vehicles over the years has driven the increase of air pollution and fuel consumption. One of the solutions to overcome this problem is using hybrid electric car because it is environmentally friendly and efficient in fuel consumption. LIPI has conducted electric car research since 1997, but there were so many problems in its development that electric car can not be developed into a national industry scale. Therefore, it is important to conduct a study that maps the problems and finds the solutions to prevent the same failure of electric car commercialization process from happening to hybrid electric car . This study was done by collecting and analyzing the primary and secondary data through interviews, discussing electric hybrid car with stakeholders, and examining earlier study results and regulations. Based on this study, several policies to support sustainability research of hybrid electric car were proposed. Some recommendations were the making of national roadmap and regulation for the usage of hybrid electric car on the road. For policy makers at LIPI, a research focus, research coordination, and pre-commercialization program were recommended.
Appendix MEV Vol 03 Iss 1
Atmaja, Tinton Dwi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (25.487 KB)
|
DOI: 10.14203/j.mev.2012.v3.%p
Modelling and Identification of Oxygen Excess Ratio of Self-Humidified PEM Fuel Cell System
Leksono, Edi;
Pradipta, Justin;
Tamba, Tua Agustinus
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (958.679 KB)
|
DOI: 10.14203/j.mev.2012.v3.39-48
One essential parameter in fuel cell operation is oxygen excess ratio which describes comparison between reacted and supplied oxygen number in cathode. Oxygen excess ratio relates to fuel cell safety and lifetime. This paper explains development of air feed model and oxygen excess ratio calculation in commercial self-humidified PEM fuel cell system with 1 kW output power. This modelling was developed from measured data which was limited in open loop system. It was carried out to get relationship between oxygen excess ratio with stack output current and fan motor voltage. It generated fourth-order 56.26% best fit ARX linear polynomial model estimation (loss function = 0.0159, FPE = 0.0159) and second-order ARX nonlinear model estimation with 75 units of wavenet estimator with 84.95% best fit (loss function = 0.0139). The second-order ARX model linearization yielded 78.18% best fit (loss function = 0.0009, FPE = 0.0009).
Development of Discrete Power Supply with Charge Pump Method for High Powered Sonar System
Ismail, Kristian;
Ismail, Syamsu
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (438.776 KB)
|
DOI: 10.14203/j.mev.2012.v3.17-22
Power supply is one of the electronic devices that can provide electric energy for electronic systems or other systems. There are several types of power supplies that can be applied depend on the requirement and functions. One example is the use of power supply for sonar systems. Sonar system is a device which can be used to detect a target under water. The sonar system is an electronic circuit that requires a power supply with specific characteristics when the sonar functions as a transmitter and a receiver in the specific span time (when on) and the specific lag time (when off). This paper discusses the design of power supply for high-powered sonar systems with discrete methods in which high power supply is only applied when the acoustic waves radiated under water. Charge pump was used to get the appropriate output voltage from lower input voltage. Charge pump utilized a combination of series and parallel connections of capacitors. The working mode of this power supply used the lag time as the calculation of time to charge charge pump capacitors in parallel while the span time was used for the calculation of discharging the charge pump capacitors in series.
Back Cover MEV Vol 03 Iss 1
Atmaja, Tinton Dwi
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.14203/j.mev.2012.v3.%p
Analysis of Inverse Angle Method for Controlling Two Degree of Freedom Manipulator
Saputra, Hendri Maja;
Abidin, Zainal;
Rijanto, Estiko
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1184.577 KB)
|
DOI: 10.14203/j.mev.2012.v3.9-16
Driver mechanism with two degree of freedom (MP 2-DK) is a robotic device that can be used for various applications such as turret drive system, gutling gun, launcher, radar antennas, and communications satellite antennas. The precision and the speed of a MP 2-DK are determined by its control system. The calculation inverse angle due to interference in six degree of freedom is necessary to control a MP 2 DK. This paper analyses three calculation methods of inverse angle which are iteration method using Jacobian matrix, reduction of matrix equations using positioning geometry, and an analytical derivation using a rotation matrix. The simulation results of the three methods showed that the first and the third methods could visually demonstrate three rotational disturbances, whereas the second method could only demonstrate the pitch and yaw (PY) disturbances. The third method required less processing time than the first and the second methods. The best method based on this research was the method of rotation matrix.