Yanuandri Putrasari
Advanced Manufacturing and Materials Centre (AMMC), Faculty of Mechanical and Manufacturing Engineering, University Tun Hussein Onn Malaysia (UTHM), Parit Raja, Batu Pahat 86400

Published : 7 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 7 Documents
Search

The Effect of Ethanol-Diesel Blends on The Performance of A Direct Injection Diesel Engine Nur, Arifin; Putrasari, Yanuandri; Reksowardojo, Iman Kartolaksono
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 3, No 1 (2012)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (449.536 KB) | DOI: 10.14203/j.mev.2012.v3.49-56

Abstract

The experiment was conducted on a conventional direct injection diesel engine. Performance test was carried out to evaluate the performance and emission characteristics of a conventional diesel engine that operates on ethanol-diesel blends. The test procedure was performed by coupling the diesel engine on the eddy current dynamometer. Fuel consumption was measured using the AVL Fuel Balance, and a hotwire anemometer was used to measure the air consumption. Some of the emission test devices were mounted on the exhaust pipe. The test of fuel variations started from 100% diesel fuel (D100) to 2.5% (DE2.5), 5% (DE5), 7.5% (DE7.5), and 10% (DE10) ethanol additions. Performance test was conducted at 1500 rpm with load variations from 0 to 60 Nm by increasing the load on each level by 10 Nm. The addition of 5% ethanol to diesel (DE5) increased the average pressure of combustion chamber indication to 48% as well as reduced the specific fuel consumption to 9.5%. There were better exhaust emission characteristics at this mixture ratio than diesel engine which used pure diesel fuel (D100), the reduction of CO to 37%, HC to 44% and opacity to 15.9%.
Modification of Surface Roughness and Area of FeCrAl Substrate for Catalytic Converter using Ultrasonic Treatment Putrasari, Yanuandri; Untoro, P; Hasan, Sulaiman; Huda, Naili; Sebayang, Darwin
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 1, No 2 (2010)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (931.952 KB) | DOI: 10.14203/j.mev.2010.v1.53-60

Abstract

Surface roughness and area play important role especially in deposition and reaction of the catalyst in the catalytic converter substrate. The aim of this paper is to show the modification of surface roughness and area of FeCrAl substrate for catalytic converter using ultrasonic method. The method was conducted by agitating the FeCrAl in 10 minutes 35 kHz ultrasonic cleaning bath. The  surface roughness, morphology, and chemical components of FeCrAl catalytic converter substrate after ultrasonic treatment were analyzed using atomic force microscope (AFM) and examined with scanning electron microscope (SEM) in combination with energy dispersive X-ray spectroscopy (EDS). The ultrasonic treatment assisted with Al2O3 powders successfully increased the roughness and surface area of FeCrAl better than SiC powders. 
Thermal efficiency and emission characteristics of a diesel-hydrogen dual fuel CI engine at various loads condition Putrasari, Yanuandri; Praptijanto, Achmad; Nur, Arifin; Santoso, Widodo Budi; Pratama, Mulia; Dimyani, Ahmad; Suherman, Suherman; Wahono, Bambang; Wardana, Muhammad Khristamto Aditya; Lim, Ocktaeck
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 9, No 2 (2018)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (177.288 KB) | DOI: 10.14203/j.mev.2018.v9.49-56

Abstract

Efforts to find alternative fuels and reduce emissions of CI engines have been conducted, one of which is the use of diesel hydrogen dual fuel. One of the goals of using hydrogen in dual-fuel combustion systems is to reduce particulate emissions and increase engine power. This study investigates the thermal efficiency and emission characteristics of a diesel-hydrogen dual fuel CI engine at various loads condition. The hydrogen was used as a secondary fuel in a single cylinder 667 cm3 diesel engine. The hydrogen was supplied to intake manifold by fumigation method, and diesel was injected directly into the combustion chamber. The results show that the performance test yielding an increase around 10% in the value of thermal efficiency of diesel engines with the addition of hydrogen either at 2000 or 2500 rpm. Meanwhile, emission analyses show that the addition of hydrogen at 2000 and 2500 rpm lead to the decrease of NOx value up to 43%. Furthermore, the smokeless emissions around 0% per kWh were occurred by hydrogen addition at 2000 and 2500 rpm of engine speeds with load operation under 20 Nm.
Experimental Investigation of 2nd Generation Bioethanol Derived from Empty-fruit-bunch (EFB) of Oil-palm on Performance and Exhaust Emission of SI Engine Putrasari, Yanuandri; Abimanyu, Haznan; Praptijanto, Achmad; Nur, Arifin; Irawan, Yan; Simanungkalit, Sabar Pangihutan
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 5, No 1 (2014)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2014.v5.9-16

Abstract

The experimental investigation of 2nd generation bioethanol derived from EFB of oil-palm blended with gasoline for 10, 20, 25% by volume and pure gasoline were conducted on performance and exhaust emission tests of SI engine. A four stroke, four cylinders, programmed fuel injection (PGMFI), 16 valves variable valve timing and electronic lift control (VTEC), single overhead camshaft (SOHC), and 1,497 cm3 SI engine (Honda/L15A) was used in this investigation. Engine performance test was carried out for brake torque, power, and fuel consumption. The exhaust emission was analyzed for carbon monoxide (CO) and hydrocarbon (HC). The engine was operated on speed range from1,500 until 4,500 rev/min with 85% throttle opening position. The results showed that the highest brake torque of bioethanol blends achieved by 10% bioethanol content at 3,000 to 4,500 rpm, the brake power was greater than pure gasoline at 3,500 to 4,500 rpm for 10% bioethanol, and bioethanol-gasoline blends of 10 and 20% resulted greater bsfc than pure gasoline at low speed from 1,500 to 3,500 rpm. The trend of CO and HC emissions tended to decrease when the engine speed increased.
The Influence of Two Cylinder Diesel Engine Modification (IDI to DI) on Its Performance and Emission Putrasari, Yanuandri; Nur, Arifin; Muharam, Aam
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 4, No 1 (2013)
Publisher : Research Centre for Electrical Power and Mechatronics, Indonesian Istitutes of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (677.241 KB) | DOI: 10.14203/j.mev.2013.v4.17-24

Abstract

Modification of combustion system from indirect injection (IDI) to direct injection (DI) was carried out on the two cylinder diesel engine, followed with tests for performance and emission. The modification from IDI to DI was conducted on a two cylinder diesel engine by removing the pre-chamber from the inside of the cylinder head, replacing the injector and its position to the top of the combustion chamber directly and also replacing the original piston with a piston that has a bowl on the crown. Performance and emission tests were conducted on 1,500 rpm with loads that vary from 0, 10, 20, 30, 40, 50, to 60 Nm. The investigation results of the diesel engine modification from IDI to DI showed several interesting phenomena. Further research is needed in order to increase the engine performance and reduce its emission.
Energy consumption, CO2, and cost analysis of hybrid and battery electric motorcycle Yuwono, Taufik; Sukra, Kurnia Fajar Adhi; Soewono, Respatya Teguh; Indriatmono, Dedy; Fuad, Nur Muhamad; Ma'ruf, Muhammad; Samanhudi, Ramadhani Deniartio; Kurniawan, Ade; Nugroho, Rudi Cahyo; Wahidin, Agus; Hayoto, Vebriyanti; Suryantoro, Muchammad Taufiq; Mokhtar, Mokhtar; Hidayat, Muhammad Novel; Wahono, Bambang; Pratama, Mulia; Nur, Arifin; Dimyani, Ahmad; Suherman, Suherman; Wardana, Muhammad Khristamto Aditya; Praptijanto, Achmad; Putrasari, Yanuandri; Prawara, Budi; Budianto, Hari
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 15, No 2 (2024)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2024.989

Abstract

The electrification of the two-wheel vehicle segment is an important strategy for decarbonising the transportation sector. This study aimed to assess the hybridisation of gasoline motorcycles with battery electric systems as an option for decarbonisation. A gasoline motorcycle that had been converted to a hybrid motorcycle was evaluated in several aspects: energy consumption, greenhouse gas (GHG) emission, and cost of energy. The vehicle was tested under the United Nations economic commission for europe (UNECE) Regulation No.40 and compared to a battery electric motorcycle. The test in internal combustion engine (ICE) mode consumed 233.31 Wh/km of specific energy, emitted 60.69 gCO2/km and cost 1.65 US-cent/km on average. The test in hybrid mode consumed specific energy at 6 % higher and 4 % lower specific energy consumption than ICE, thus not improving the carbon dioxide (CO2) emission and operating cost. In electric battery mode, energy consumption was saved by 83 %, with 35 % lower CO2 and 74 % cost savings. The battery electric motorcycle runs more efficiently with 88 % lower energy consumption, 53.8 % lower CO2 and saved cost by 82 %. If the hybrid controller is improved in future development, it could lower specific energy consumption by 41.7 %, reduce CO2 by 11.2 % and save cost by 35.7 %.
Electric wheelchair navigation based on hand gestures prediction using the k-Nearest Neighbor method Anam, Khairul; Nahela, Safri; Sasono, Muchamad Arif Hana; Rizal, Naufal Ainur; Putra, Aviq Nurdiansyah; Wahono, Bambang; Putrasari, Yanuandri; Wardana, Muhammad Khristamto Aditya; Salim, Taufik Ibnu
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 16, No 1 (2025)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/j.mev.2025.1229

Abstract

The advancement of technology in the medical field has led to innovations in assistive devices, including wheelchairs, to enhance the mobility and independence of individuals with disabilities. This study investigates the use of electromyography (EMG) signals from hand muscles to control a wheelchair using the k-Nearest Neighbor (kNN) classification method. kNN is a classification algorithm that identifies objects based on the proximity of similar objects in the feature space. The wheelchair control process begins with the development of a kNN model trained on EMG signal data collected from five respondents over 30 seconds. The data was processed using feature extraction techniques, namely Mean Absolute Value (MAV) and Root Mean Square (RMS), to identify motion characteristics corresponding to five types of movement: forward, backward, right, left, and stop. The extracted features were classified using the kNN algorithm implemented on a Raspberry Pi 3. The classification results were then used to control the wheelchair through an Arduino UNO microcontroller connected to a BTS7960 motor driver. The study achieved an average accuracy of 96% with the MAV feature and ???? = 3. Furthermore, combining MAV and RMS features significantly improved classification accuracy. The highest accuracy was obtained using the combination of MAV and RMS features with ???? = 3, demonstrating the effectiveness of feature selection and parameter tuning in enhancing the system's performance.