cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Mechatronics, Electrical Power, and Vehicular Technology
ISSN : 20873379     EISSN : 20886985     DOI : -
Core Subject : Engineering,
Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular technology as well as related topics. All papers are peer-reviewed by at least two referees. MEV is published and imprinted by Research Center for Electrical Power and Mechatronics - Indonesian Institute of Sciences and managed to be issued twice in every volume. For every edition, the online edition is published earlier than the print edition.
Arjuna Subject : -
Articles 596 Documents
A study effects of injection pressure and wall temperature on the mixing process of NOx and NH3 in Selective Catalytic Reduction system Muhammad Khristamto Aditya Wardana; Ocktaeck Lim
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 11, No 1 (2020)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.45-54

Abstract

Diesel engines are commonly used for public transportation on-road and off-road applications. Growth production of the diesel engine is very significant from year to year. Nitride Oxide (NOx) from diesel engine was one of the major sources of air pollution. Selective Catalytic Reduction (SCR) has been successfully used to reduce NOx from a diesel engine with a chemical reaction from ammonia (NH3). The mixing reaction between NOx and NH3 reaction can produce steam (H2O) and Nitrogen (N2). However, ammonia uniformity pattern usually not homogenization and the ammonia was difficult to mix with NOx. The constant air flows incomplete to assist the spray injector to spread NH3 to all corners of SCR. The impact study of turbulent phenomena and standard k-epsilon Low-Reynolds Number model to the mixing process in the SCR system using STARCCM+. The simulation studies are conducted under different pressure (4 to 6 bars), the injection rate (0.04 g/s) and temperature (338 K – 553 K) and the high pressure and high velocity magnitude creating turbulent swirl flow. The ammonia decomposition process and mixing process with NOx were investigated using a box with optical access. The simulation and numerical study results validated using back pressure value and the distribution of NOx concentration value from the catalyst outlet. The wall temperature will increase the urea evaporation to generate ammonia and gas pressure will increase the mixing process and chemical process in the SCR system. These reactions enable to optimize the SCR system technology which eventually able to reduce the NOx quantity from a diesel engine.
Numerical investigation of the effect of ocean depth variations on the dynamics of a ship mounted two-DoF manipulator system Mohamad Luthfi Ramadiansyah; Edwar Yazid; Cheng Yee Ng
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 13, No 2 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.113-124

Abstract

The dynamics of a ship need to be considered in the development of a manipulator system that will be applied to the ocean-based operation. This paper aims to investigate the effect of ocean depth variations on the ship motion as disturbances to a ship-mounted two-DoF (Degrees of Freedom) manipulator joint torque using an inverse dynamics model. Realization is conducted by deriving the mathematical model of a two-DoF manipulator system subject to six-DoF ship motion, which is derived by using Lagrange-Euler method. It is then combined with numerical hydrodynamic simulation to obtain the ship motions under ocean depth variations, such as shallow (50 m), intermediate (750 m), and deep (3,000 m) waters. Finding results show that randomness of the ship motions appears on the manipulator joint torque. In the azimuth link, maximum joint torque is found in shallow water depth with an increment of 8.271 N.m (285.69 %) from the undisturbed manipulator. Meanwhile, the maximum joint torque of the elevation link is found in intermediate water depth with an increment of 53.321 N.m (6.63 %). However, the difference between depth variations is relatively small. This result can be used as a baseline for sizing the electrical motor and developing the robust control system for the manipulator that is mounted on the ship by considering all ocean depth conditions.
Back Cover MEV Vol 11 Iss 1 Ghalya Pikra
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 11, No 1 (2020)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.%p

Abstract

Swarm control of an unmanned quadrotor model with LQR weighting matrix optimization using genetic algorithm Endra Joelianto; Daniel Christian; Agus Samsi
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 11, No 1 (2020)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.1-10

Abstract

Unmanned aerial vehicle (UAV) quadrotors have developed rapidly and continue to advance together with the development of new supporting technologies. However, the use of one quadrotor has many obstacles and compromises the ability of a UAV to complete complex missions that require the cooperation of more than one quadrotor. In nature, one interesting phenomenon is the behaviour of several organisms to always move in flocks (swarm), which allows them to find food more quickly and sustain life compared with when they move independently. In this paper, the swarm behaviour is applied to drive a system consisting of six UAV quadrotors as agents for flocking while tracking a swarm trajectory. The swarm control system is expected to minimize the objective function of the energy used and tracking errors. The considered swarm control system consists of two levels. The first higher level is a proportional – derivative type controller that produces the swarm trajectory to be followed by UAV quadrotor agents in swarming. In the second lower level, a linear quadratic regulator (LQR) is used by each UAV quadrotor agent to follow a tracking path well with the minimal objective function. A genetic algorithm is applied to find the optimal LQR weighting matrices as it is able to solve complex optimization problems. Simulation results indicate that the quadrotors' tracking performance improved by 36.00 %, whereas their swarming performance improved by 17.17 %.
Back Cover MEV Vol 13 Iss 2 Ghalya Pikra
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 13, No 2 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Cascade feedforward neural network and deep neural network controller on photovoltaic system with cascaded multilevel inverters: Comparison on standalone and grid integrated system Mailugundla Rupesh; Vishwanath Shivalingappa Tegampure
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 13, No 2 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.157-178

Abstract

The introduction of a micro-grid-based power generation network will help to meet the demands of consumers while reducing environmental impact. Several industrialized and emerging countries allocate considerable resources to renewable energy-based power generation and invest significant sums of money in this area. This study examines the challenges involved with electricity generation through photovoltaic (PV) systems and the integration of the same with the grid to mitigate power quality issues and improve the power factor for various loading conditions. An innovative multilayer inverter for grid-connected PV systems has been developed to enhance the voltage profile and resulted in a drop in total harmonic distortion (THD). A cascade multilevel inverter (associated with a grid-integrated PV system and managed using multiple innovative artificial intelligence controllers) was developed in this research project. Various advanced intelligent controllers, such as cascade feedforward neural networks (CFFNN) and deep neural networks (DNN), have been analyzed under various operating situations and observed that the THD of voltage, current at the grid, and the load is less than 3 % as per the IEEE 519 standards along with this power factor is maintained nearly unity for the grid-connected system. The quality of power in terms of voltage, frequency, total harmonics distortion, and power factor are improved by using a novel deep neural network algorithm in a cascaded multilevel inverter and verified according to IEEE 1547 and IEEE 519 standards to determine the efficacy of the proposed system.
Rotordynamics analysis of solar hybrid microturbine for concentrated solar power Maulana Arifin
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 11, No 1 (2020)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.38-44

Abstract

Microturbine based on a parabolic dish solar concentrator runs at high speed and has large amplitudes of subsynchronous turbo-shaft motion due to the direct normal irradiance (DNI) fluctuation in daily operation. A detailed rotordynamics model coupled to a full fluid film radial or journal bearing model needs to be addressed for increasing performance and to ensure safe operating conditions. The present paper delivers predictions of rotor tip displacement in the microturbine rotor assembly supported by a journal bearing under non-linear vibrations. The rotor assembly operates at 72 krpm on the design speed and delivers a 40 kW power output with the turbine inlet temperature is about 950 °C. The turbo-shaft oil temperature range is between 50 °C to 90 °C. The vibrations on the tip radial compressor and turbine were presented and evaluated in the commercial software GT-Suite environment. The microturbine rotors assembly model shows good results in predicting maximum tip displacement at the rotors with respect to the frequency and time domain.
Component degradation and system deterioration: An overview of early termination of PV-DG microgrid system Tinton Dwi Atmaja; Dalila Mat Said; Sevia Mahdaliza Idrus; Ahmad Fudholi; Nasarudin Ahmad; Dian Andriani; Ahmad Rajani; Sohrab Mirsaeidi; Haznan Abimanyu
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 13, No 2 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.201-213

Abstract

Degradation of components and system failure within the microgrid system is deteriorating the performance of electrification. The aim of this study is to discuss the relationship and connections between issues resulting from degradation and deterioration in the microgrid system, in addition to introducing the prominent impacts which may eventually lead to the premature termination of the microgrid system. This study explored the microgrid degradation and deterioration issues within four microgrid sections: generation section, storage section, transmission section, and distribution section. Subsequently, this study analyzes, derives, and classifies all emerging issues into four types of prominent impacts. The degradation and deterioration invoked many component performance issues into four main damaging outcomes, namely (i) deteriorated transmission line yielded issues regarding expected energy not achieved; (ii) energy deficit and unpredicted blackout come after the depth of discharge (DOD) reduction and invoke a loss of power supply; (iii) a shorter battery life cycle, shorter transformer lifespan, and decreased DG lifetime concluded as a shorter microgrid life expectancy; and (iv) rapid microgridbroke down and the crash of the key component inadvertently fastened the time to failure and gave rise to the early failure of a microgrid system. It is envisaged that the discussion in this study can provide useful mapped information for the researcher, stakeholder, operator, and other parties for thoroughly addressing various degradation and deterioration issues and anticipating the early termination of the microgrid system.
Design, construction, and evaluation of transformer-based orbital shaker for coffee micropropagation Edwin Romeroso Arboleda
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 13, No 2 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.147-156

Abstract

This study offers a novel solution to deal with the complicated electronic circuitry for speed controller and too complex mechanical design of rotating mechanism of an orbital shaker. The developed prototype used a transformer that varies the supply voltage to control the speed of rotation of the orbital shaker. The prototype has five speed levels which depend on the input voltage. These speeds are 180 rpm at 12 V, 258 rpm at 15 V, 360 rpm at 18 V, 427 rpm at 21 V, and 470 rpm at 24 V. The prototype was tested to run continuously for 48 hours for each speed level, with speed being measured every hour using a tachometer. Statistical computation shows that the speed remains constant for the entire 48 hour period. Evaluation of results shows that the speed controller and the novel mechanical design for the orbital shaking motion achieved their functions. For this reason, it can be concluded that the prototype is durable and safe for use in orbital shaking applications.
Lux and current analysis on lab-scale smart grid system using Mamdani fuzzy logic controller Bayu Prasetyo; Faiz Syaikhoni Aziz; Anik Nur Handayani; Ari Priharta; Adi Izhar Bin Che Ani
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 11, No 1 (2020)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.11-21

Abstract

The increasing need for electrical energy requires suppliers to innovate in developing electric distribution systems that are better in terms of quality and affordability. In its development, it is necessary to have a control that can combine the electricity network from renewable energy and the main network through voltage back-up or synchronization automatically. The purpose of this research is to create an innovative lux and current analysis on a lab-scale smart grid system using a fuzzy logic controller to control the main network, solar panel network and generator network to supply each other with lab-scale electrical energy. In the control, Mamdani fuzzy logic controller method is used as the basis for determining the smart grid system control problem solving by adjusting the current conditions on the main network and the light intensity conditions on the LDR sensor. Current conditions are classified in three conditions namely safe, warning, and trip. Meanwhile, the light intensity conditions are classified into three conditions namely dark, cloudy and bright. From the test results, the utility grid (PLN) is at active conditions when the load current is 0.4 A (safe) and light intensity is 1,167 Lux (dark). Then the PLN + PV condition is active when the load current is 1.37 (warning) and the light intensity is 8,680 lux (bright). Finally, the generator condition is active when the load current is 1.6 (trip) and the light intensity is 8,680 (bright). Based on the test results, it is known that the system can work to determine which source is more efficient based on the parameters obtained.