cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Mechatronics, Electrical Power, and Vehicular Technology
ISSN : 20873379     EISSN : 20886985     DOI : -
Core Subject : Engineering,
Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular technology as well as related topics. All papers are peer-reviewed by at least two referees. MEV is published and imprinted by Research Center for Electrical Power and Mechatronics - Indonesian Institute of Sciences and managed to be issued twice in every volume. For every edition, the online edition is published earlier than the print edition.
Arjuna Subject : -
Articles 596 Documents
Improvement of power grid stability and load distribution using diesel excitation controller Ehsan Ganji; Mehdi Mahdavian
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 13, No 1 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.36-47

Abstract

One of the requirements for controlling hybrid power systems is designing an appropriate excitation system, flexibility, protection, and coordination of all components to improve system stability. In this paper, various types of equipment simulated in the linear form and non-linear models are connected to the power supply. In the same direction, while presenting a new controller for the diesel generator excitation system and a filter used to purify and attenuate current harmonics is reported on the stability of a grid-independent system. Finally, the variation of the mode for the voltage and power of the system has been confirmed at the time of error and complete system stability. Also, the important indicators in the analysis are obtained in the lowest values, which can be seen from the controlled harmonics of the system of this data. In addition, the variation of the mode for the voltage and power of the system has been confirmed and the important indicators in the analysis are obtained in the lowest values.
Appendix MEV Vol 13 Iss 1 Ghalya Pikra
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 13, No 1 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.%p

Abstract

Design and application of models reference adaptive control (MRAC) on ball and beam Muhammad Zakiyullah Romdlony; Muhammad Ridho Rosa; Edwin Muhammad Puji Syamsudin; Bambang Riyanto Trilaksono; Agung Surya Wibowo
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 13, No 1 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.15-23

Abstract

This paper presents the implementation of an adaptive control approach to the ball and beam system (BBS). The dynamics of a BBS are non-linear, and in the implementation, the uncertainty of the system's parameters may occur. In this research, the linear state-feedback model reference adaptive control (MRAC) is used to synchronize the states of the BBS with the states of the given reference model. This research investigates the performance of the MRAC method for a linear system that is applied to a non-linear system or BBS. In order to get a faster states convergence response, we define the initial condition of the feedback gains. In addition, the feedback gains are limited to get less oscillation response. The results show the error convergence is improved for the different sets of the sinusoidal reference signal for the MRAC with modified feedback gains. The ball position convergence improvement of MRAC with modified feedback gains for sinusoidal reference with an amplitude of 0.25, 0.5, and 0.75 are 35.1 %, 36 %, and 52.4 %, respectively.
State of charge estimation of ultracapacitor based on equivalent circuit model using adaptive neuro-fuzzy inference system Rizal Nurdiansyah; Novie Ayub Windarko; Renny Rakhmawati; Muhammad Abdul Haq
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 13, No 1 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.60-71

Abstract

Ultracapacitors have been attracting interest to apply as energy storage devices with advantages of fast charging capability, high power density, and long lifecycle. As a storage device, accurate monitoring is required to ensure and operate safely during the charge/discharge process. Therefore, high accuracy estimation of the state of charge (SOC) is needed to keep the Ultracapacitor working properly. This paper proposed SOC estimation using the Adaptive Neuro-Fuzzy Inference System (ANFIS). The ANFIS is tested by comparing it to true SOC based on an equivalent circuit model. To find the best method, the ANFIS is modified and tested with various membership functions of triangular, trapezoidal, and gaussian. The results show that triangular membership is the best method due to its high accuracy. An experimental test is also conducted to verify simulation results. As an overall result, the triangular membership shows the best estimation. Simulation results show SOC estimation mean absolute percentage error (MAPE) is 0.70 % for charging and 0.83 % for discharging. Furthermore, experimental results show that MAPE of SOC estimation is 0.76 % for random current. The results of simulations and experimental tests show that ANFIS with a triangular membership function has the most reliable ability with a minimum error value in estimating the state of charge on the Ultracapacitor even under conditions of indeterminate random current.
Study on the production of hydrogen gas from water electrolysis on motorcycle engine Zikri Zikri; Aken Derisman; Muslim Muslim; Wawan Purwanto; Al Ichlas Imran
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 13, No 1 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.88-94

Abstract

The primary emphasis of the research is on how to use hydrogen as an energy source for motorcycle fuel. This is an intriguing hypothesis to explore since, at the moment, fossil energy is used to meet fuel demands, although fossil energy supplies are running limited. As a result, hydrogen energy is an option that may be employed as a fuel substitute utilizing commercial water raw materials and the electrolysis method. The research goal is to demonstrate that electrolysis of water to hydrogen gas may occur while the vehicle is in use, to compute the amount of hydrogen gas generated, and to determine the time the vehicle can be utilized using the gas fuel created. The long-term goal of this study is to create a vehicle powered entirely by hydrogen gas produced by water electrolysis, particularly for motorcycles. The experimental approach was employed in this investigation, with three phases of testing on a carburetor-type motorbike utilizing 1, 2, and 3 liters of Pertamax gasoline. The results demonstrated that the process of electrolysis of water into hydrogen gas on motorcycles is possible; however, the amount of gas generated is still quite little. The hydrogen gas generated by this electrolysis method is only 0.06 bar when 1 liter of fuel is used, 0.42 bar when 2 liters of fuel are used, and 0.98 bar when 3 liters of fuel are used.
Load optimization on the performance of combined cycle power plant Block 4 PT Indonesia Power Priok POMU Louise Indah Utami; Ika Yuliyani; Yanti Suprianti; Purwinda Iriani
Journal of Mechatronics, Electrical Power and Vehicular Technology Vol 13, No 1 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.24-35

Abstract

Combined cycle power plant (CCPP) is a closed-cycle power plant, where the heat from the gas turbine’s (GT) exhaust gas will be streamed to the heat recovery steam generator (HRSG) to be utilized by steam turbine (ST). CCPP Block 4 (Jawa-2) PT Indonesia Power Priok POMU has an installed capacity of 880 MW, consists of 2 GT units (301.5 MW each) and 1 ST unit (307.5 MW). The performance of a power plant depends on its load, as the efficiency of the turbine generator is low when operated at low loads. The data as of July 2019 showed that 2.2.1 (2 GT, 2 HRSG, 1 ST) configuration has been used in three conditions where the CC net load was around 30 - 45 %, which in fact could be compensated by the 1.1.1 (1 GT, 1 HRSG, 1 ST) configuration. This resulted in a decrease of the CC net efficiency up to 21.34 %. The optimization that can be done is to change the load configuration from 2.2.1 to 1.1.1 at 0 - 50 % of CC net load through simulations, by including the influence of the GT and HRSG start-up processes. The result of this optimization is that the CCPP performance increases due to higher performance of each turbine generator. Thus, the optimization results during July 2019 provided energy saving of 1,146.09 MMBTU or equivalent to cost saving of IDR 152,249,551.76.
Torsional strength analysis of universal joint’s ZP-11A due to yokes modification and materials Hartono Yudo; Andi Setiawan; Ocid Mursid; Muhammad Iqbal
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 13, No 2 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.179-188

Abstract

The study examined the strength of the universal joint after it was loaded with torsion. It used different materials that can withstand tensile stress in accordance with accepted principles and made modifications to the yoke as a result of the topology optimization process. The topology optimization determined that the yoke's part needed to withstand load without changing its dimensions and minimize stress distribution. According to the results, the maximum shear stress on the spider of the original universal joint model made of JIS-SF590A steel was 84.57 MPa, the shear stress on the yoke component was 30.84 MPa, and the maximum von Mises was 341.1 MPa. As a result of using JIS-SF590A steel, yoke modification 3 has produced a reduction in shear stress of 12.97 % and a reduction in von Mises stress of 35.33 % from the original yoke. This is the most efficient design of yoke and also this modified yoke form provides a wider elevation angle and is easier to manufacture.
Front Cover MEV Vol 11 Iss 1 Ghalya Pikra
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 11, No 1 (2020)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2020.v11.%p

Abstract

Preface MEV Vol 13 Iss 2 Ghalya Pikra
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 13, No 2 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Preface MEV Vol 13 Iss 2
Plumbing leakage detection system with water level detector controlled by programmable logic controller type Omron CPM2A Sri Hartanto; Desmayadi Desmayadi
Journal of Mechatronics, Electrical Power, and Vehicular Technology Vol 13, No 2 (2022)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.mev.2022.v13.137-146

Abstract

There is a chance of leakage in the plumbing caused by water pressure in the pipes, improper installation of pipe connections, or external influences, such as earthquakes. Plumbing leakage that is detected too late can cause damage to other systems. It is necessary to have a plumbing leakage detection system to detect a leak in the plumbing. Therefore, in this research, a plumbing leakage detection system is designed with a water level detector (WLD) controlled by a programmable logic controller (PLC) type Omron CPM2A. The method used in this research is designing the optimal model form of the system, which is distinguished by designing hardware and software, testing the devices, such as power supply, WLD, and channel relay module (CRM), and making conclusions. From the results of this research, it was found that the system works well in detecting leakage of plumbing, as indicated by all transistors' ability to work well where the electrodes (E1 and E2) are connected by water. The transistor in the WLD module will work as a switch or transistor in the saturation position. In this research, it can be seen that even though there is a leakage from the relay contacts of 1.8 VDC, it is still considered in a safe condition because to provide a trigger to the 3B3D Module, a minimum of 12 VDC is required. In addition, when the relay is not working or off, the measurement at the normally closed (NC) terminal is 12 VDC.