cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Atom Indonesia Journal
ISSN : -     EISSN : -     DOI : -
Core Subject : Science,
Exist for publishing the results of research and development in nuclear science and technology Starting for 2010 Atom Indonesia published three times a year in April, August, and December The scope of this journal covers experimental and analytical research in all areas of nuclear science and technology. including nuclear physics, reactor physics, radioactive waste treatment, fuel element development, radioisotopes and radio pharmaceutical engineering, nuclear and radiation safety, neutron scattering, material science and technology, as well as utilization of isotopes and radiation in agriculture, industry, health and environment.
Arjuna Subject : -
Articles 452 Documents
Neutronic Parameter Analysis of Plate-Type Fueled TRIGA 2000 Reactor by MCNPX A. Nuryana; R. S. N. Mahmudah; A. Khakim
Atom Indonesia VOL 49, NO 2 (2023): AUGUST 2023
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2023.1199

Abstract

A novel simulation to calculate the neutronic parameters of the TRIGA 2000 reactor using plate-type fuel has been performed. The plate fuel used was produced by the Indonesian Nuclear Industry (PT INUKI) with U3Si2-Al material. Neutronic parameters based on INUKI’s plate-type fuel dimension and the current TRIGA’s configuration were simulated using MCNPX. The simulation was performed by modeling the complete reactor’s configuration on a fresh fuel core state. We obtained the kinetic parameter values from the simulation, i.e., delayed neutron fraction of 8.11×10‑3, a prompt neutron lifetime of 2.0551×10‑4 s, and an average neutron generation time of 1.87×10‑4 s. The excess reactivity of the reactor was 9.02 %Δk/k, while reactivity in the one-stuck-rod state was below ‑0.5 $ with an average value of ‑3.40 %Δk/k (‑4.19 $). The average thermal neutron flux peak occurred at the central irradiation position with the value of 3.0×1013 to 3.1×1013 n/(cm2 s). The reactor has a power peaking factor of 1.379 in the control rod position of 0 % on D3 fuel. The reactor had a negative feedback reactivity coefficient, except for the moderator coefficient. These results suggest that the current configuration of plate-type fuel met the nuclear reactor neutronic safety standards.
Optimizing Neutronic and Photonic Performance in Irradiation Systems of Symmetric TRIGA Cores S. M. Shauddin
Atom Indonesia VOL 49, NO 2 (2023): AUGUST 2023
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2023.1219

Abstract

The BAEC TRIGA MARK-II Research Reactor (BTRR) in Bangladesh has been used for a wide range of purposes, including basic and applied nuclear research and human resource development. Therefore, its core management should be flexible to meet various objectives with different priorities and to deliver the best possible outcome. In this study, neutron and gamma photon flux variation was studied at different radial and axial irradiation systems of the current core (C-0) as well as six symmetric reconfigurations (C-1, C-2, C-3, C-4, C-5, and C-6) of the existing BTRR using the universal MCNP code. While keeping the exact core component and material density, the symmetric reconfigured cores were modeled based on core criticality calculation and excess reactivity in the critical state. Finally, it was observed that the reconfigured core C-1 has the best neutronic and photonic performance at the irradiation systems compared to other reconfigured cores, against the reference core C-0.
Acknowledgement Atom Indonesia Vol 49 No 2 ack49no2 ack49no2
Atom Indonesia VOL 49, NO 2 (2023): AUGUST 2023
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2023.1367

Abstract

Homogeneity Test on Collimators for Boron-Neutron Capture Therapy based on SNI 8506:2018 S. Santosa; K. Khotimah; H. Yasmine
Atom Indonesia VOL 49, NO 2 (2023): AUGUST 2023
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2023.1277

Abstract

A serial homogeneity test based on Indonesian Standard SNI 8506:2018 were undertaken to investigate 12 manufactured collimators by using double wall single image radiography (DWSI) technique with an x-ray machine ranging from 120 to 150 kV. The standard stated that the film density should be measured on seven different points, and the result obtained must not exceed ± 0.05 from the average density. This paper outlines a testing work for the collimators, calculating the density on six different points in the film. Six different points were selected due to technical constrains of the collimator manufacturing and radiography capabilities of the selected laboratory. The results of film the density for the 12 collimators are: (1) 2.59; (2) 2.57; (3) 2.14; (4) 1.88; (5) 2.10; (6) 1.96; (7) 2.33; (8) 2.28; (9) 2.06; (10) 2.18; (11) 2.24; and (12) 2.33. The result shows that collimator-2 has the most homogenous density. This study concludes that established parameters and process are needed to manufacture the collimator for BNCT in achieving proper performance testing based on the standard.
Radon Concentration in Urban Areas in the North and West of Morocco A. Tayebi; M. El-Maghraoui; M. Tayebi; C. El-Mahjoub
Atom Indonesia VOL 49, NO 2 (2023): AUGUST 2023
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2023.1279

Abstract

Radon is a colorless, odorless radioactive gas produced by the decay of uranium and radium. It is the second cause of cancer of the lungs after smoking. It has been present in Earth's crust since the creation of Earth. Uranium-rich rocks in the deep crust are the main source of radon. Its emanation from the ground surface varies from one point to another depending on the physical characteristics of the terrain crossed as observed in this study between North and West Morocco. A dosimetric study of those emanations was performed by using the LR-115 solid-state nuclear track detector (SSNTD) which was subsequently processed by techniques developed and calibrated in the laboratory. The study revealed high concentrations of this gas in confined spaces at ground level and, in particular, in basements and less-ventilated ground floor rooms. In order to reduce these concentrations of radon and the probability of carcinogenic attacks by these accumulations of this gas, it is recommended to ventilate these premises well. Good air circulation allows the removal of this harmful gas.
É…-Hypernuclear States as Dihadronic Molecules A. Jahanshir
Atom Indonesia VOL 49, NO 2 (2023): AUGUST 2023
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2023.1152

Abstract

The study of exotic hypernuclei attracts a great deal of interest in nuclear physics. The reality of heavy hyperon hypernuclei is the subject of intense concern among theoreticians and experimenters in recent years. The core-hyperon model uses to explain abnormal nuclei spectra, recent observations of new exotic heavy hyperon hypernuclei cannot be explained or predicted by ordinary heavy core nuclei. These exotic hypernuclei states are a two-cluster bound states. We calculate the mass spectrum and constituent mass of particles in hypernuclei using the relativistic Schrödinger equation with molecular pseudoharmonic-type potential between particles inside the core and hyperon. Such calculations represent the interaction between the hyperon and the nuclei core. I review recent theoretical studies on the ground states and the excited states of hypernuclei bound states. Finally, we present explicit predictions of the exotic bound states based on the interactions obtained from quantum field theory and the projective unitary representation model. Studies have shown that by increasing the mass number of hyperon-core states,  the value of the constituent mass and energy eigenvalue of Ʌ-hypernucleus increases. Also, by growing and increasing the proton number in the (Ʌ-N) states the value of the constituent mass of Ʌ-hyperon increases.
External Bremsstrahlung Studies on Films of Lead Monoxide Filled Polycarbonate Composite V. A. Kandagal; B. Lobo
Atom Indonesia VOL 49, NO 2 (2023): AUGUST 2023
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2023.1304

Abstract

The development of high-Z (high atomic number) radiation shielding materials is vital in order to protect personnel who work with harmful gamma radiation sources. At the same time, the emission of external bremsstrahlung (EB) radiation in those shielding materials when the radiation source emits beta particles as well as gamma radiation is also of prime concern.The production of EB in films of lead monoxide (PbO) loaded polycarbonate (PC) composite at eleven different filler levels (FLs) varying, in terms of weight fraction, from 0.0 % up to 10.0 % were investigated experimentally by using beta particles from strontium-90/yttrium-90 (90Sr/90Y) radioactive source. A nonlinear relation is observed between EB intensity and target thickness. The effective atomic numbers of the prepared PbO-filled PC composite films (at different FLs) were determined via EB measurements, followed by calculations, and the values obtained were compared with the modified atomic numbers which were determined for the same composite films (at different FLs) using the Markowicz and Van Grieken equation, and it was found that they are in good agreement. Finally, the atomic number dependence of EB in these composite films (PbO-filled PC composites) has been studied. It is obtained that the intensity of EB spectra depends on the square of the atomic number of the target material.
Assessment of 137Cs in the Environment of Hetauda City, Nepal by In-Situ Gamma Ray Spectrometry A. Mishra; R. Khanal
Atom Indonesia VOL 49, NO 2 (2023): AUGUST 2023
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2023.1268

Abstract

A significant amount of 137Cs radioactive fallout have been spread in the atmosphere due to nuclear weapon testing and nuclear reactor disasters. This fallout eventually settles on the Earth's surface, and because 137Cs has a long half-life, it remains in the environment for an extended period. Mapping the distribution of 137Cs is crucial, and this study aims to assess the radioactive deposition of 137Cs in the ground to establish baseline data for its distribution in the environment of Hetauda City, Nepal. Recently, Hetauda City has been designated as the capital city of the Bagmati province. To measure 137Cs deposition, portable (backpack) gamma ray spectrometer was used with a 0.347-liter NaI(Tl) detector.  Rapid measurement was carried out while walking at a pace of less than 2 km/h, and the distance between the detector and the ground was maintained at less than 1 m with the detector pointing downward. The surface activity of 137Cs was measured in the range of 0.003 to 2.382 kBq/m2, with an average value of 0.581 ± 0.343 kBq/m2. The spatial variability of 137Cs was found to be smooth in the area, and the mean annual effective dose calculated was 0.379 ± 0.224 µSv. The low dose rates and smooth spatial distribution of 137Cs in the environment indicate no contamination, and the trace amount present could be due to global fallout from weapons testing and nuclear accidents. The results were compared with previously reported values worldwide.
Cover Atom Indonesia Vol 49 No 2 cvr49no2 cvr49no2
Atom Indonesia VOL 49, NO 2 (2023): AUGUST 2023
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2023.1365

Abstract

Elemental Mapping and Quantities in Different Soybean Seed Colors Using Micro X-Ray Fluorescence and Their Correlations with Germination K. Wibisono; W. Nurcholis
Atom Indonesia VOL 49, NO 2 (2023): AUGUST 2023
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/aij.2023.1300

Abstract

Micro X-ray fluorescence (μ-XRF) possesses a powerful analytical technique able to detect macro- and micro-elements. Each plant variety has a unique elemental composition and important role in the germination process. The aims of this study were to (1) map the elements and quantities in the soybean seed coat and endosperm, (2) investigate how the various elements might mediate the inter-relationship or correlation between elements within soybean seed genotypes with different seed coat colors, and (3) investigate that the targeted morphological characteristics especially in germination would be affected by seed elements. A μ-XRF technique was used for the elemental analysis and quantification. Three genotypes of Indonesian soybean were used in this study: greenish, black, and yellowish. In this study, we found that the silicon (Si) and magnesium (Mg) elements have a significant correlation. The high quantity of Si element in the embryo axis has a positive correlation with root length. The high quantity of Mg element which is evenly distributed on the endosperm has a positive correlation with normal germination. Si and Mg elements in the seeds have a negative correlation with imbibition water absorption. Based on the comparison between the three genotypes, the black genotype was superior in terms of germination and higher Si and Mg elements. Thus, the Si and Mg elements can be used as a reference in determining superiority of genotypes at the germination stage.

Filter by Year

2004 2023


Filter By Issues
All Issue VOL 49, NO 2 (2023): AUGUST 2023 VOL 49, NO 1 (2023): APRIL 2023 Vol 48, No 3 (2022): December 2022 Vol 48, No 2 (2022): August 2022 Vol 48, No 1 (2022): April 2022 Vol 47, No 3 (2021): December 2021 Vol 47, No 2 (2021): August 2021 Vol 47, No 1 (2021): April 2021 Vol 46, No 3 (2020): December 2020 Vol 46, No 2 (2020): August 2020 Vol 46, No 1 (2020): April 2020 Vol 45, No 3 (2019): December 2019 Vol 45, No 2 (2019): August 2019 Vol 45, No 1 (2019): April 2019 Vol 44, No 3 (2018): December 2018 Vol 44, No 2 (2018): August 2018 Vol 44, No 1 (2018): April 2018 Vol 43, No 3 (2017): December 2017 Vol 43, No 2 (2017): August 2017 Vol 43, No 1 (2017): April 2017 Vol 42, No 3 (2016): December 2016 Vol 42, No 2 (2016): August 2016 Vol 42, No 1 (2016): April 2016 Vol 41, No 3 (2015): December 2015 Vol 41, No 2 (2015): August 2015 Vol 41, No 1 (2015): April 2015 Vol 40, No 3 (2014): December 2014 Vol 40, No 2 (2014): August 2014 Vol 40, No 1 (2014): April 2014 Vol 39, No 3 (2013): December 2013 Vol 39, No 2 (2013): August 2013 Vol 39, No 1 (2013): April 2013 Vol 38, No 3 (2012): December 2012 Vol 38, No 2 (2012): August 2012 Vol 38, No 1 (2012): April 2012 Vol 37, No 3 (2011): December 2011 Vol 37, No 2 (2011): August 2011 Vol 37, No 1 (2011): April 2011 Vol 36, No 3 (2010): December 2010 Vol 36, No 2 (2010): August 2010 Vol 36, No 1 (2010): April 2010 Vol 35, No 2 (2009): July 2009 Vol 35, No 1 (2009): January 2009 Vol 34, No 2 (2008): July 2008 Vol 34, No 1 (2008): January 2008 Vol 33, No 2 (2007): July 2007 Vol 33, No 1 (2007): January 2007 Vol 32, No 2 (2006): July 2006 Vol 32, No 1 (2006): January 2006 Vol 31, No 2 (2005): July 2005 Vol 31, No 1 (2005): January 2005 Vol 30, No 2 (2004): July 2004 Vol 30, No 1 (2004): January 2004 More Issue