cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jurtdm@batan.go.id
Editorial Address
Pusat Teknologi dan Keselamatan Reaktor Nukir (PTKRN) Badan Tenaga Nuklir Nasional (BATAN) Gedung 80 Kawasan Puspiptek Setu - Tangerang Selatan Banten - Indonesia (15310)
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega
ISSN : 1411240X     EISSN : 25279963     DOI : -
Core Subject : Science,
Jurnal Teknologi Reaktor Nuklir "TRI DASA MEGA" adalah forum penulisan ilmiah tentang hasil kajian, penelitian dan pengembangan tentang reaktor nuklir pada umumnya, yang meliputi fisika reaktor, termohidrolika reaktor, teknologi reaktor, instrumentasi reaktor, operasi reaktor dan lain-lain yang menyangkut reaktor nukli. Frekuensi terbit tiga (3) kali setahun setiap bulan Februari, Juni dan Oktober.
Arjuna Subject : -
Articles 225 Documents
DETERMINING GAMMA SOURCE IN URANIUM MOLYBDENUM OF FUEL IN G.A SIWABESSY MULTI PURPOSE REACTOR Dewi Nur Riskiana; Anis Rohanda; R. Farzand Abdullatif; I Wayan Ngarayana
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 25, No 1 (2023): February 2023
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2023.6799

Abstract

 Nuclear fission reactions produce a lot of radionuclides that release energy, one of which is in the form of gamma radiation. Gamma radiation is produced by various types of radionuclides, and nuclear reactor fuel will produce different values of gamma intensity. Uranium Molybdenum (U7Mo-Al) is the type of nuclear fuel for future research reactors that possesses many advantages. For the application of molybdenum-based fuel, it is necessary to determine the resulting gamma radiation. The purpose is to determine the gamma radiation produced from molybdenum-based fuel with various densities. This study begins with the determination of the mass composition of the reactor component, calculations with ORIGEN2.1, and data output analysis. The U7Mo-Al density was varied, namely 2.96 gU/cm3, 3.85 gU/cm3, 4.44 gU/cm3, 5.43 gU/cm3, 6.91 gU/cm3, and 8.29 gU/cm3. The gamma radiation yield of U7Mo-Al is lower than that of uranium silicide (U3Si2) with the same density of 2.96 gU/cm3. The result will add to the justification for the superiority of U7Mo-Al compared to U3Si2/Al. For U7Mo-Al with densities of 3.85 gU/cm3, 4.44 gU/cm3, 5.43 gU/cm3, 6.91 gU/cm3, and 8.29 gU/cm3, the one that produced the lowest gamma radiation intensity is 3.85 gU/cm3 while the highest is 8.29 gU/cm3. This explains that the intensity of the gamma radiation produced is directly proportional to the fuel density. The low intensity of gamma radiation in molybdenum-based fuel can be used as a suggestion in shielding design to ensure the operational safety of reactors.  
SYNTHESIS AND CHARACTERIZATION OF CESIUM SILICATE TO DETERMINE ITS DETAILED PROPERTIES AS CHEMISORBED ONTO STRUCTURAL MATERIALS OF LIGHT WATER REACTOR DURING SEVERE ACCIDENT CONDITIONS I Wayan Ngarayana
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 25, No 1 (2023): February 2023
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2023.6803

Abstract

Cesium chemisorption phenomenon strongly contributes to the source terms transport during light water nuclear reactor accidents. Large amounts of cesium silicates are identified to be chemisorbed onto structure material, reduce cesium volatility, and affect the late release and re-vaporization phenomena. Although it has been studied for a long time, several characteristics of these compounds are still under discussion. In this study, Cs2SiO3, Cs2Si2O5, and Cs2Si4O9 were synthesized through the solid-state method and the results have been confirmed using X-Ray Diffraction (XRD) measurement. Furthermore, their crystal structures have been refined based on the XRD analysis. The crystal structure refinement of these compounds proves the previous studies, but with minor distinctions in the lattice parameters. XRD patterns changing over time when measured in the open-air environment also show that Cs2Si4O9 is the most stable species among other cesium silicate species. This indicates that the chemisorbed Cs-Si-O compound onto the structural material as identified by previous studies is most likely Cs2Si4O9 rather than Cs2SiO3 or Cs2Si2O5. Therefore, detailed Cs2Si4O9 identification including its thermodynamic properties characterization could be very useful to enhance the database that is being built to improve current source terms transport codes.
DESIGN OF HELICAL TYPE STEAM GENERATOR FOR EXPERIMENTAL POWER REACTOR Sunny Ineza Putri; Prihadi Setyo Darmanto; Raden Mohammad Subekti
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 25, No 1 (2023): February 2023
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2023.6656

Abstract

Reaktor Daya Eksperimental (RDE) is a high-temperature gas-cooled reactor (HTGR) for electricity generation, heat generation, and hydrogen production by Batan. Empirical and numerical calculations are needed to strengthen the existing design. The numerical method by computational fluid dynamic (CFD) analyzes temperature distribution and pressure drop along the pipe. The Batan RDE steam generator design has a seven-layer helical pipe model, while this research uses a one-layer helix pipe. In empirical calculations, the heat transfer region has three sections; single-phase liquid, two-phase, and single-phase vapor heat transfer. In numerical calculations, apply the assumption of constant heat flux and constant working fluid properties. The results of empiric calculations data showed that the helical pipe height was 3.98 m, shorter than the Batan design, which is 4.97 m. This considerable difference due to empirical calculations did not cover the safety factor. The results of numerical calculations show that in the single-phase, empiric calculation data were acceptable since the different values of numerical calculations for empiric calculations data were below 10%. Meanwhile, the case of the two-phase numerical calculations is not satisfactory and needs further research to obtain optimal results.
GAMMA RADIATION EFFECTS ON THE PERFORMANCE OF MONO-CRYSTALLINE SOLAR CELLS Soni Prayogi; Zainuddin Zainuddin
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 25, No 1 (2023): February 2023
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2023.6756

Abstract

In this study, we present examples of solar cells that were subjected to various levels of 60Co gamma radiation. The solar cells we use are mono-crystalline, which has a stable crystal structure and high efficiency compared to polycrystalline. Prior to and during gamma irradiation, the current-voltage characteristics of monocrystalline silicon solar cells under AM1.5 light conditions and their photon spectral currents were examined. The results of the experiment demonstrate that as the dose of gamma radiation increases, solar cell metrics including open circuit voltage (Voc), short circuit current (Isc), and efficiency (η) drop. The photon spectral current demonstrates that as dose gamma is increased, the current decreases at shorter wavelengths  and the defects are primarily produced near the solar cell's surface. Our findings demonstrate the gamma irradiation-induced breakdown of silicon solar cells and the minority carrier lifetime which demonstrates that the minority carrier lifetimes sharply decline with increasing radiation dose.
DESIGN SCENARIO AND ANALYSIS FOR PRELIMINARY SPECIFICATION OF STEAM GENERATOR IN THE PELUIT-40 Byan Wahyu Riyandwita; Muhammad Subhan; Topan Setiadipura; Almira Citra Amelia; Sri Hastuty; Purwo Kadarno; Farisy Yogatama Sulistyo
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 25, No 1 (2023): February 2023
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2023.6778

Abstract

The helical steam generator is connected to an HTGR-type nuclear reactor called PeLUIt-40 for steam production. Steam is used to generate electricity and hydrogen. A once-through helical tube bundle was employed because of its ability to endure mechanical stress due to thermal expansion, high resistance to flow-induced vibrations, and better thermal performance compared to a straight tube one. To produce the targeted steam, a design analysis of the once-through helical steam generator needs to be conducted. A quick evaluation method was used to predict the preliminary specifications required for steam production. Simple thermodynamic calculations combined with empirical heat transfer coefficients covering convective and boiling processes at constant pressure were used to carry out the analysis. Two scenarios were conducted to evaluate the design choice based on the previous design of RDE-10.
ANALYSIS OF CORE CONFIGURATION FOR CONCEPTUAL GAS COOLED FAST REACTOR (GFR) USING OPENMC Iklimatul Karomah; Ahmad Muzaki Mabruri; Ratna Dewi Syarifah; Nuri Trianti
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 25, No 2 (2023): June 2023
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2023.6879

Abstract

This study focused on a conceptual core configuration of Gas Cooled Fast Reactor (GFR), as part of a generation IV reactor. Uranium-plutonium carbide (UC-PuC) was used as reactor fuel and a Monte Carlo simulation method using OpenMC has been carried out. This study aims to find the composition of uranium-plutonium carbide fuel to use inside a fuel pin, making up a hexagonal prism fuel assembly arranged to form an entire core. A homogeneous and heterogeneous core configuration was considered in this study, while the plutonium percentage varied from 8%- 15%. For the homogenous core configuration, 10% was found as the optimum plutonium fraction with the value of %∆k/k =1, which was then used as a reference to make up a heterogeneous core configuration. A heterogeneous core with 3 radial fuel regions of F1 using 9% Pu fraction, F2 10%, and F3 11% showed the most stable result for 5-year burn-up with a %∆k/k of 0.7. The %∆k/k value was decreased by 0.3 due to the fission reaction that occurred more evenly in all 3 fuel regions of heterogeneous configuration, reducing the core power peaking factor. Keywords: Core configuration, GFR, OpenMC, Reactivity, Fission reaction
A SIMULATION OF IRRADIATION CALCULATIONS ON LUTETIUM-177 PRODUCTION IN RSG-GAS USING U3SI2-AL AND U9MO-AL FUELS Lena Rosmayani; Anis Rohanda; Raden Farzand Abdullatif
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 25, No 2 (2023): June 2023
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2023.6793

Abstract

This research is a simulation of irradiation calculations on the production of the radioisotope Lutetium-177 (177Lu) in the G.A Siwabessy Reactor (RSG-GAS). This study aims to analyze the comparative calculation of 177Lu activity and its purity. One of the production methods of 177Lu in RSG-GAS is carried out by irradiating Lu2O3 targets. This Lu2O3 target irradiation produced the radioisotope 177Lu along with 177mLu as an impurity. For Medical treatment using radioisotopes, the minimum activity for 177Lu is 20 GBq/mg, and the impurity should not exceed 0.1%. Calculations were carried out with thermal neutron flux input at 15 MWt operational power for the RSG-GAS core with U3Si2-Al fuel (density 2.96 gU/cc and 3.55 gU/cc) and U9Mo-Al fuel (density 3.55 gU/cc). Calculations were carried out by simulating 8 days of irradiation using ORIGEN2.1. The results showed that the 177Lu activity resulting from irradiation of Lu2O3 targets at various CIP positions in the U9Mo-Al reactor core was larger than that of the U3Si2-Al core. Until the 30th day, the 177Lu product resulting from irradiation on the U3Si2-Al and U9Mo-Al cores still meets the minimum value of 20 GBq/mg for treatment needs in nuclear medicine, with the activity value of 177Lu resulting from irradiation on the U3Si2-Al core ranging from 241-403 GBq/mg, while the activity of irradiated 177Lu in the U9Mo-Al core ranges from 335-561 GBq/mg. In addition, until the 30th day of decay, 177Lu has a percentage value of 177mLu irradiated in the U9Mo-Al and U3Si2-Al cores of 0.0346% and 0.0344%, respectively. The results are still below the maximum impurity value of 0.1% and thus safe to use as a therapeutic agent. Keywords: 177Lu, Activity, RSG-GAS, ORIGEN2, Irradiation
Neutronic Analysis of the RSG-GAS Fuel Using Burnable Poison Muhammad Ridho; Haryono Budi Santosa; Tukiran Surbakti; Purwadi Purwadi
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 25, No 2 (2023): June 2023
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2023.6818

Abstract

Control and safety of nuclear reactors are significantly influenced by the determination of safety parameters. The three most crucial safety factors for assessing reactor status are the infinite multiplication factor, reactivity coefficients, and power peaking factor. The objective of the present study is to examine how the RSG-GAS fuel safety parameters behave in a typical reactor operation state. A lattice cell fuel model of the fuel lattice of the RSG-GAS reactor core was modeled using WIMSD-5Bwith cross-section library data based on ENDF/B-VIII.0. The value of the infinite multiplication factor with various burnable poison concentrations, as well as the moderator and fuel temperatures, were the variables that were examined. The reactivity coefficient parameters were similarly analyzed. By comparing the WIMSD-5B code results with information from the SAR document, the WIMS model for RSG-GAS fuel was verified, and it was inferred that the parameters are in good agreement. Safe behavior uses the predicted reactivity coefficient values as an example.
THE PRELIMINARY STUDY ON IMPLEMENTING A SIMPLIFIED SOURCE TERMS ESTIMATION PROGRAM FOR EARLY RADIOLOGICAL CONSEQUENCES ANALYSIS Theo Alvin Ryanto; Jupiter Sitorus Pane; Muhammad Budi Setiawan; Ihda Husnayani; Anik Purwaningsih; Hendro Tjahjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 25, No 2 (2023): June 2023
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2023.6869

Abstract

Indonesia possesses numerous potential sites for nuclear power plant development. A fast and comprehensive radiological consequences analysis is required to conduct a preliminary analysis of radionuclide release into the atmosphere, including source terms estimation. One simplified method for such estimation is the use of the Relative Volatility approach by Kess and Booth, published in IAEA TECDOC 1127. The objective of this study was to evaluate the use of a simple and comprehensive tool for estimating the source terms of planned nuclear power plants to facilitate the analysis of radiological consequences during site evaluation. Input parameters for the estimation include fuel burn-up, blow-down time, specific heat transfer of fuel to cladding, and coolant debit, using 100 MWe PWR as a case study. The results indicate a slight difference in the calculated release fraction compared to previous calculations, indicating a need to modify Keywords: Source terms, Relative volatility, Release fraction, PWR, SMART
SYSTEMATIC LITERATURE REVIEW (SLR): NUCLEAR POWER PLANTS Muhammad Reza Maulana Aliva; Nofi Yendri Sudiar; Hamdi Hamdi
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 25, No 2 (2023): June 2023
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/tdm.2023.6871

Abstract

Nuclear Power Plant (NPP) is a thermal power plant using one or several nuclear reactors as its heat source. NPP uses radioactive materials such as uranium as the heat source by utilizing fission reactions. The fission reaction produces enormous heat energy. Currently, there are many studies on NPPs, ranging from technological developments to the environmental impact of the NPP itself. This study aims to identify research developments on nuclear power plants from around the world obtained from relevant international journals in 2017-2023. The method used in this study is the Systematic Literature Review (SLR) method. The SLR method is used to identify, review, evaluate, and conclude all available research with interesting topic areas, with specific relevant research questions. Data were obtained by searching journals with Harzing's Publish or Perish application from the Scopus journal database. There are 191 journals with the keyword " Nuclear Power Plant " obtained from the Scopus database. Then these journals are filtered by type of article and if the number of citations is more than 32, then 49 articles are obtained which will be reviewed. This SLR method shows the development of research on NPP in several developed countries that have been using this technology for a long time. In addition, research topics such as the Fukushima accident, fault diagnostics, and safety assessment are the most discussed topics in the research so that they can be used as a reference for countries that are developing NPP.

Filter by Year

2010 2024


Filter By Issues
All Issue Vol 26, No 2 (2024): June 2024 Vol 26, No 1 (2024): February 2024 Vol 25, No 3 (2023): October 2023 Vol 25, No 2 (2023): June 2023 Vol 25, No 1 (2023): February 2023 Vol 24, No 3 (2022): October 2022 Vol 24, No 2 (2022): June 2022 Vol 24, No 1 (2022): February (2022) Vol 23, No 3 (2021): October (2021) Vol 23, No 2 (2021): June 2021 Vol 23, No 1 (2021): FEBRUARY 2021 Vol 22, No 3 (2020): OCTOBER 2020 Vol 22, No 2 (2020): June 2020 Vol 22, No 1 (2020): February 2020 Vol 21, No 3 (2019): October 2019 Vol 21, No 2 (2019): JUNI 2019 Vol 21, No 1 (2019): February 2019 Vol 20, No 3 (2018): Oktober 2018 Vol 20, No 2 (2018): JUNI 2018 Vol 20, No 1 (2018): Februari 2018 Vol 19, No 3 (2017): Oktober 2017 Vol 19, No 2 (2017): Juni 2017 Vol 19, No 1 (2017): Februari 2017 Vol 18, No 3 (2016): Oktober 2016 Vol 18, No 2 (2016): Juni 2016 Vol 18, No 1 (2016): Februari 2016 Vol 17, No 3 (2015): Oktober 2015 Vol 17, No 2 (2015): Juni 2015 Vol 17, No 1 (2015): Pebruari 2015 Vol 16, No 3 (2014): Oktober 2014 Vol 16, No 2 (2014): Juni 2014 Vol 16, No 1 (2014): Pebruari 2014 Vol 15, No 3 (2013): Oktober 2013 Vol 15, No 2 (2013): Juni 2013 Vol 15, No 1 (2013): Pebruari 2013 Vol 14, No 3 (2012): Oktober 2012 Vol 14, No 2 (2012): Juni 2012 Vol 14, No 1 (2012): Pebruari 2012 Vol 13, No 3 (2011): Oktober 2011 Vol 13, No 2 (2011): Juni 2011 Vol 13, No 1 (2011): Pebruari 2011 Vol 12, No 3 (2010): Oktober 2010 Vol 12, No 2 (2010): Juni 2010 Vol 12, No 1 (2010): Pebruari 2010 More Issue