cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jurtdm@batan.go.id
Editorial Address
Pusat Teknologi dan Keselamatan Reaktor Nukir (PTKRN) Badan Tenaga Nuklir Nasional (BATAN) Gedung 80 Kawasan Puspiptek Setu - Tangerang Selatan Banten - Indonesia (15310)
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega
ISSN : 1411240X     EISSN : 25279963     DOI : -
Core Subject : Science,
Jurnal Teknologi Reaktor Nuklir "TRI DASA MEGA" adalah forum penulisan ilmiah tentang hasil kajian, penelitian dan pengembangan tentang reaktor nuklir pada umumnya, yang meliputi fisika reaktor, termohidrolika reaktor, teknologi reaktor, instrumentasi reaktor, operasi reaktor dan lain-lain yang menyangkut reaktor nukli. Frekuensi terbit tiga (3) kali setahun setiap bulan Februari, Juni dan Oktober.
Arjuna Subject : -
Articles 225 Documents
INVESTIGATION OF RDE THERMAL PARAMETERS CHANGES IN RESPONSE TO LONG-TERM STATION BLACK OUT Hendro Tjahjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 19, No 2 (2017): Juni 2017
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (3363.532 KB) | DOI: 10.17146/tdm.2017.19.2.3258

Abstract

Due to long-term station black out (SBO) of the RDE (Experimental Power Reactor), the residual heat from the core will be removed to a residual heat removal system (RHRS). The objective of this study is to know the transient characteristic of RDE thermal parameters in response to the loss of residual heat removing ability for long-term. To achieve this objective, an analysis model of reactor thermal parameters changes during SBO, using Matlab program to simulate heat transfer equations of conduction, convection and radiation has been performed. Using this program, the changes of RDE thermal parameters until 800 hours after reactor trip have been analyzed. It is concluded that, in long-term SBO condition, the reactor is still safe with the maximum core temperature of 1140°C, which is still far under the safety limit of 1600°C as stated in the design criteria. More attentions are needed to be taken with the increasing of concrete temperature up to 600°C when the water storage is empty. Therefore, the availability of water in the RHRS shall absolutely be maintained.Keywords: experimental power reactor, residual heat removal, transient, Matlab. INVESTIGASI PERUBAHAN PARAMETER TERMAL RDE PADA KONDISI KEHILANGAN CATU DAYA LISTRIK DALAM JANGKA PANJANG. Akibat kehilangan catu daya listrik luar pada Reaktor Daya Eksperimental (RDE), panas sisa dari reaktor dibuang ke suatu sistem pembuang panas sisa. Penelitian ini bertujuan untuk mengetahui karakteristik transien parameter termal RDE ketika terjadi kegagalan pembuangan kalor sisa tersebut dalam jangka panjang. Untuk mencapai tujuan tersebut telah disusun model analisis perubahan parameter termal reaktor ketika terjadi Station Black Out (SBO) menggunakan pemrograman Matlab dengan melibatkan persamaan-persamaan perpindahan kalor secara konduksi, konveksi dan radiasi. Dengan menggunakan program ini perubahan parameter termal RDE hingga 800 jam setelah reaktor trip telah dianalisis. Disimpulkan bahwa pada kondisi SBO dalam jangka panjang tersebut, reaktor masih tetap aman dengan temperatur maksimum teras sebesar 1140 °C, yaitu masih jauh di bawah batas aman 1600 °C yang telah ditetapkan dalam kriteria desain. Perlu diperhatikan adanya peningkatan temperatur beton hingga 600 °C jika air pendingin sudah habis. Oleh karena itu, ketersediaan air pendingin di sistem pembuang panas sisa mutlak harus dijaga.Kata kunci: reaktor daya eksperimental, pembuang panas sisa, transien, Matlab.
INVESTIGASI PENGENDALIAN LEVEL PERMUKAAN AIR PRESSURIZER DI PWR BERBASIS KENDALI PROPORTIONAL INTEGRAL Syaiful Bakhri
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 16, No 3 (2014): Oktober 2014
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (531.083 KB)

Abstract

Sistem kendali level air di pressurizer sangat dibutuhkan bagi keselamatan pengoperasian PWR dengan menyelaraskan perubahan volume sekaligus mempertahankan tekanan yang ada di kalang primer pada set point tertentu. Beberapa riset telah mengusulkan sistem cerdas baik neural network maupun fuzzy logic untuk meningkatkan kemampuan sistem kendali konvensional level yang umum dipakai di PWR yaitu Proportional-Integral (PI) atau Proportional-Integral-Derivative (PID). Namun sangat disayangkan penelitian-penelitian ini kurang mengkaji secara komprehensif potensi kendali konvensional ini. Padahal jika parameternya ditentukan dengan lebih seksama akan memberikan hasil yang setara bahkan lebih baik. Penelitian ini bertujuan untuk menjawab tantangan ini dengan meneliti lebih seksama sekaligus menguji parameter-parameter kendali ini agar diperoleh konfigurasi terbaik untuk sistem kendali level air pressurizer. Dibanding dengan dengan hasil simulasi sistem cerdas jaringan saraf tiruan yang pernah dibuat sebelumnya, ternyata kendali PI hasil penelitian ini memberikan peningkatan waktu naik yang lebih baik sekitar 280 kali, peningkatan waktu penetapan sekitar 293 kali, penurunan lewatan maksimum sekitar 1,1 kali, dan penurunan puncak sekitar 0,2 %. Hasil validasi dari konfigurasi ini juga terbukti stabil, mampu mengatasi gangguan selama 10 detik dengan puncak maksimum level 0,005%, dan mampu mengikuti perubahan set point dengan baik.  ABSTRACT The control system in the pressurizer water level is necessary for the safety of the operation of pressurizer water reactors (PWRs). It will compensate t the primary loop volume changes while keeping the existing pressure of the primary loop at a certain set point. Some researchers have proposed both an intelligent system of neural network and a fuzzy logic to improve the capability of the common conventional control systems used in PWR, i.e. Proportional-Integral (PI) or Proportional-Integral-Derivative (PID). However, those studies did not comprehensively assess the potential of the conventional control systems. It has been confirmed that if the parameters of the Pibased control system are determined more carefully, its results will be equivalent to the results of other control systems or even better. This study aims to address this challenging topic by examining and testing control parameters more closely to obtain the best configuration of the PI-based control system. Compared to the results of the artificial neural network-based control system, the PI results of this study provide an increase of rise time around 280 times, better settling time for approximately 293 times, a decrease of overshoot about 1.1 times, and a reduction of the peak around 0.2%. The configuration has also been validated to be stable and able to overcome disturbances for about 10 seconds with a maximum peak level of 0.005%. Moreoever, it can track the set point changes very well.
OPTIMIZATION OF BIOLOGICAL SHIELD FOR BORON NEUTRON CAPTURE CANCER THERAPY (BNCT) AT KARTINI RESEARCH REACTOR Gani Priambodo; Fahrudin Nugroho; Dwi Satya Palupi; Rosilatul Zailani; Yohannes Sardjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 19, No 3 (2017): Oktober 2017
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (821.431 KB) | DOI: 10.17146/tdm.2017.19.3.3626

Abstract

A study to optimize a model of neutron radiation shielding for BNCT facility in the irradiation room has been performed. The collimator used in this study is a predesigned collimator from earlier studies. The model includes the selection of the materials and the thickness of materials used for radiation shield. The radiation shield is required to absorb leaking radiation in order to protect workers at the threshold dose of 20 mSv/year. The considered materials were barite concrete, paraffin, stainless steel 304 and lead. The leaking neutron radiation dose rates have been determined using Monte Carlo N Particle Version Extended (MCNPX) with a radiation dose limit rate that is less than 10 µSv/hour. This dose limit is in accordance with BAPETEN regulation related the threshold dose for workers, in which the working duration is 8 hours per day and 5 days per week. It is recommended that the best model for the irradiation room has a dimension 30 cm width, 30 cm length, 30 cm height and a main layer of irradiation room shielding made from the material paraffin which is 68 cm thickness on the left side and bottom of the irradiation room, 70 cm thickness on the right side of the iradiation room, 45 cm thickness on the front of the irradiation room and 67 cm thickness on the top of the irradiation room. The additional layers of 15 cm and 10 cm thickness are used along with paraffin in order to reduce the intensity of primary radiation from piercing the beamport after two primary layers. There is no neutron radiation leakage in this model.Keywords: Radiation shielding, BNCT, MCNPX, radiation dose rate, piercing beamport. OPTIMASI PERISAI RADIASI NEUTRON FASILITAS RUANGAN IRADIASI UNTUK BORON NEUTRON CAPTURE CANCER THERAPY (BNCT) DENGAN SUMBER BEAMPORT TEMBUS REAKTOR KARTINI. Telah dilakukan pemodelan perisai radiasi neutron untuk fasilitas Boron Neutron Capture Therapy (BNCT) pada sekeliling ruangan iradiasi. Pemodelan mencakup pemilihan bahan dan tebal yang digunakan untuk perisai radiasi. Perisai diharuskan mampu menahan radiasi yang keluar ruangan sehingga dosis radiasi berada di bawah ambang dosis bagi pekerja radiasi sebesar 20 mSv/tahun. Bahan yang dipertimbangkan adalah beton barit, paraffin, stainless steel 304 dan timbal. Perhitungan laju dosis neutron epitermal dilakukan dengan menggunakan program Monte Carlo N Particle Version Extended (MCNPX) dengan batasan laju dosis radiasi kurang dari 10 µSv/jam, sesuai dengan peraturan Kepala BAPETEN mengenai batas ambang laju dosis pekerja radiasi, dengan asumsi perhitungan waktu kerja 8 jam per hari dan 5 hari per minggu. Desain pertama dari empat desain yang telah dibuat kemudian dipilih sebagai desain yang direkomendasikan dengan laju dosis di bawah batas ambang 10 µSv/jam. Ruangan iradiasi memiliki dimensi panjang 30 cm, lebar 30 cm dan tinggi 30 cm. Lapisan utama perisai pada desain pertama berbahan paraffin setebal 68 cm pada sisi kiri dan bawah ruangan, 70 cm pada sisi kanan ruangan, 45 cm pada sisi depan ruangan dan 67 cm pada sisi atas ruangan. Paraffin setebal 15 cm dan 10 cm ditambahkan sebagai peredam intensitas radiasi primer dari beamport tembus yang masih cukup besar.Kata Kunci: perisai radiasi, BNCT, MCNPX, laju dosis radiasi, beamport tembus.
DESAIN KONSEPTUAL TERAS REAKTOR RISET INOVATIF BERBAHAN BAKAR URANIUM MOLIBDENUM DARI ASPEK NEUTRONIK Tukiran Surbakti; Surian Pinem; Tagor Malem Sembiring; Lily Suparlina; Jati Susilo
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 14, No 3 (2012): Oktober 2012
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (410.576 KB)

Abstract

Manfaat yang luas dari penggunaan reaktor riset membuat banyak negara membangun reaktor riset baru. Kecenderungan saat ini adalah reaktor tipe reaktor serbaguna (MPR) dengan teras yang kompak untuk mendapatkan fluks neutron yang tinggi dengan daya yang relatif sedang atau rendah. Reaktor riset yang ada di Indonesia yang paling muda usianya sudah berumur 25 tahun. Oleh karena itu diperlukan desain reaktor riset baru sebagai alternatif, disebut reaktor riset inovatif (RRI), kelak pengganti reaktor riset yang sudah ada. Tujuan dari riset ini mendapatkan konfigurasi teras setimbang reaktor riset yang optimal dengan kriteria memiliki fluks neutron termal minimum sebesar 2,5x1014 n/cm2 s pada daya 20 MW (minimum), memiliki panjang operasi satu siklus lebih dari 40 hari dan penggunaan bahan bakar yang paling efisien. Desain neutronik dilakukan untuk bahan bakar baru U-9Mo-Al dengan kerapatan bervariasi dan jenis reflektor yang bervariasi. Desain dilakukan dengan paket program WIMSD-5B dan BATAN-FUEL. Hasil desain konseptual menyajikan 4 konfigurasi teras yaitu 5×5, 5×7, 6×5 dan 6×6. Hasil optimasi menunjukkan bahwa teras setimbang reaktor RRI dengan konfigurasi 5×5, tingkat muat 235U sebesar 450 g, reflektor berilium, fluks neutron termal maksimum di daerah reflektor sebesar 3,33×1014 neutron cm-2s-1 dan panjang siklus 57 hari merupakan desain teras reaktor riset inovatif yang paling optimal.Kata kunci: desain konseptual, bahan bakar uranium-molibdenum,berilium, D2O, WIMS, BATAN-FUEL The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR) and then as an alternative to replace the old research reactor. The aim of this research is to get the optimal configuration of equilibrium core with the acceptance criteria are minimum thermal neutron flux is 2.5E14 n/cm2 s at the power level of 20 MW (minimum), length of cycle of more than 40 days, and the most efficient of using fuel in the core. Neutronics design has been performed for new fuel of U-9Mo-Al with various fuel density and reflector. Design calculation has been performed using WIMSD-5B and BATAN-FUEL computer codes. The calculation result of the conceptual design shows four core configurations namely 5x5, 5x7, 6x5 and 6x6. The optimalization result for equilibrium core of innovative research reactor is the 5x5 configuration with 450 gU fuel loading, berilium reflector, maximum thermal neutron flux at reflector is 3.33E14 n/cm2 s and lenght of cycle is 57 days is the most optimal of IRR. Keywords: conceptual design, uarium-molibdenum-uarium feul, berilium, D2O, WIMS, BATAN-FUEL
ANALYSIS OF 3D SEMI-ELLIPTICAL CRACK ON REACTOR PRESSURE VESSEL WALL WITH LOAD STRESS AND CRACK RATIO Mike Susmikanti; Roziq Himawan; Entin Hartini; Rokhmadi Rokhmadi
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 21, No 1 (2019): February 2019
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17146/tdm.2019.21.1.5306

Abstract

Reactor Pressure Vessel (RPV) wall is an important component in the Nuclear Power Plant (NPP). During reactor operation, RPV is subjected to high temperature, pressure, and neutron exposure. This condition could lead to RPV structure failure. In order to assure the integrity of RPV during the reactor lifetime, it is mandatory to perform a structural integrity assessment of RPV by evaluating postulated crack in RPV. In the previous study, the crack has evaluated in 2-D. However, 3-D analysis of semi-elliptic crack shape in the surface of the thick plate for RPV wall using SA 508 Steel is yet to be analyzed. The objective of this study is to analyze and modeling the evaluation in variation crack ratio with some load stress in 3-D. The Stress Intensity Factor (SIF) and J-integral are used as crack parameter. The J-Integral were calculated using MSC MARC MENTAT based on Finite Element Method (FEM) for obtaining the SIF value. The inputs are a crack ratio, load stress, material property, and geometry. The modeling of SIF value and goodness of fit are using MINITAB. The fracture condition could be predicted in comparison to the SIF value and fracture toughness. For the load stress 70 MPa and 80 MPa, with a crack ratio 0.25, 0.33 and 0.5,  the material on RPV wall will in fracture condition.Keywords: Semi elliptic surface crack, 3-dimension, reactor pressure vessel, elastic-plastic fracture mechanics, J-integral
REAKTOR INNOVATIVE MOLTEN SALT (IMSR) DENGAN SISTEM KESELAMATAN PASIF MENYELURUH Andang Widiharto
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 13, No 1 (2011): Pebruari 2011
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (301.422 KB)

Abstract

Pengembangan Teknologi Reaktor Nuklir pada masa mendatang mengarah pada peningkatan aspek keselamatan, peningkatan pendayagunaan bahan bakar, reduksi limbah radioaktif, ketahanan terhadap proliferasi bahan-bakar nuklir dan peningkatan aspek ekonomi. reaktor Innovative Molten Salt (IMSR) adalah reaktor nuklir yang menggunakan bahan bakar cair berupa garam lebur fluoride (7LiF-ThF4-UF4-MaFx). Reaktor IMSR didesain sebagai reaktor pembiak termal, yaitu membiakkan U-233 dari Th-232. Hal ini untuk menjawab permasalahan sustainabilitas ketersedian sumber daya bahan bakar nuklir dan reduksi limbah radioaktif. Dalam aspek keselamatan, desain reaktor IMSR memiliki sifat inherent safe, yaitu koefisien umpan balik daya yang negatif serta memiliki fitur-fitur keselamatan pasif. Fitur-fitur keselamatan pasif terdiri dari sistem shutdown pasif, sistem pendinginan pasif pasca shutdown serta sistem pendinginan pasif untuk produk fisi. Kecelakaan yang berpotensi terjadi pada IMSR, yaitu kecelakaan kehilangan aliran bahan bakar, kecelakaan kehilangan aliran pendingin, kecelakaan kehilangan kemampuan pengambilan kalor serta kecelakaan kerusakan integritas sistem reaktor, dapat ditangani sepenuhnya secara pasif hingga mencapai kondisi shutdown selamat.Kata kunci: keselamatan pasif, inherent safe, IMSR   The next Nuclear Reactor Technology developments are directed to the increasing of the aspects of safety, fuel utility, radioactive waste reduction, proliferation retention and economy. Innovative Molten Salt Reactor (IMSR) is a nuclear reactor design that uses fluoride molten salt (7LiF-ThF4-UF4-MaFx). IMSR is designed as a thermal breeder reactor, i.e. to produce U-233 from Th-232. This is the answer of natural nuclear fuel sustainability and radioactive waste problems. In term of safety aspect, IMSR design has inherent safe characteristics, i.e. negative power feedback coefficient, and passive safety features. The passive safety features are passive shutdown systems, passive post shutdown cooling system and passive radioactive waste cooling system. The potentially accidents in IMSR, i.e. loss of fuel flow accident, loss of coolant flow accident, loss of heat sink accident and loss of reactor system integrity, can be handled totally passively until the safe shutdown condition is achieved. Keywords: passive safety, inherent safe, IMSR
ANALYSIS OF GAMMA HEATING AT TRIGA MARK REACTOR CORE BANDUNG USING PLATE TYPE FUEL Setiyanto Setiyanto; Tukiran Surbakti
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 18, No 3 (2016): Oktober 2016
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2177.624 KB) | DOI: 10.17146/tdm.2016.18.3.3004

Abstract

ABSTRACT In accordance with the discontinuation of TRIGA fuel element production by its producer, the operation of all TRIGA type reactor of at all over the word will be disturbed, as well as TRIGA reactor in Bandung. In order to support the continuous operation of Bandung TRIGA reactor, a study on utilization of fuel plate mode, as used at RSG-GAS reactor, to replace the cylindrical model has been done. Various assessments have been done, including core design calculation and its safety aspects. Based on the neutronic calculation, utilization of fuel plate shows that Bandung TRIGA reactor can be operated by 20 fuel elements only. Compared with the original core, the new reactor core configuration is smaller and it results in some empty space that can be used for in-core irradiation facilities. Due to the existing of in-core irradiation facilities, the gamma heating value became a new factor that should be evaluated for safety analysis. For this reason, the gamma heating for TRIGA Bandung reactor using fuel plate was calculated by Gamset computer code. The calculations based on linear attenuation equations, line sources and gamma propagation on space. Calculations were also done for reflector positions (Lazy Susan irradiation facilities) and central irradiation position (CIP), especially for any material samples. The calculation results show that gamma heating for CIP is significantly important (0,87 W/g), but very low value for Lazy Susan position (lest then 0,11 W/g). Based on this results, it can be concluded that the utilization of CIP as irradiation facilities need to consider of gamma heating as data for safety analysis report. Keywords: gamma heating, nuclear reactor, research reactor, reactor safety.   ABSTRAK Dengan dihentikannya produksi elemen bakar reaktor jenis Triga oleh produsen, maka semua reaktor TRIGA di dunia terganggu operasinya, termasuk juga reaktor TRIGA 2000 di Bandung. Untuk mendukung pengoperasian reaktor TRIGA Bandung, telah dilakukan kajian penggunaan bahan bakar jenis pelat seperti yang digunakan oleh RSG-GAS. Berbagai langkah analisis telah disiapkan, termasuk perhitungan desain teras, dan sistem keselamatannya. Penggunaan elemen bakar tipe pelat menghasilkkan reaktor dapat dioperasikan hanya dengan 20 elemen bakar. Dibandingkan teras aslinya, nampak bahwa teras baru menjadi lebih kecil dan kompak, rapat dayanya naik, tetapi menyisakan beberapa ruang kosong yang dimungkinkan untuk menempatkan fasilitas iradiasi di teras. Dengan adanya fasilitas iradiasi di dalam teras, maka pembangkitan panas gamma di teras menjadi faktor baru yang harus diperhatikan. Untuk alasan ini, telah dilakukan perhitungan pembangkitan panas gamma teras reaktor Triga 2000 Bandung mengunakan program Gamset. Perhitungan didasarkan pada persamaan atenuasi liner, sumber garis dan arah perambatan tiga dimensi. Selain panas gamma di teras, akan dihitung juga panas gamma di reflektor (Lazy Susan), dan di CIP untuk berbagai jenis bahan. Diperoleh hasil bahwa panas gamma di CIP cukup signifikan (0,87 w/g), tetapi di posisi Lazy Susan relatif kecil, rata-rata hanya 0,11 w/g. Dari hasil tersebut dapat disimpulkan bahwa penggunaan CIP untuk iradiasi perlu mempertimbangkan panas gamma dalam perhitungan LAK nya. Kata kunci: panas gamma, reaktor nuklir, reaktor penelitian, keselamatan reaktor 
STUDY ON DISCHARGE HEAT UTILIZATION OF 250 MWe PCMSR TURBINE SYSTEM FOR DESALINATION USING MODIFIED MED Andang Widiharto; Atinna Paramita Gunawan
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 15, No 1 (2013): Pebruari 2013
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (592.691 KB)

Abstract

PCMSR (Passive Compact Molten Salt Reactor) is one type of Advanced Nuclear Reactors. The PCMSR has benefit charasteristics of very efficient fuel use, high safety charecteristic as well as high thermodinamics efficiency. This is due to its breeding capability, inherently safe characteristic and totally passive safety system. The PCMSR design consists of three module, i.e. reactor module, turbine module and fuel management module. Analysis in performed by parametric calculation of the turbine system to calculate the turbine system efficiency and the hat available for desalination. After that the mass and energi balance of desalination process are calculated to calculate the amount of distillate produced and the amount of feed sea water needed. The turbine module is designed to be operated at maximum temperature cycle of 1373 K (1200 0C) and minimum temperature cycle of 333 K (60 0K). The parametric calculation shows that the optimum turbine pressure ratio is 4.3 that gives the conversion efficiency of 56 % for 4 stages turbine and 4 stages compressor and equiped with recuperator. In this optimum condition, the 250 MWe PCMSR turbine system produces 196 MWth of waste heat with the temperature of cooling fluid in the range from 327 K (54 0C) to 368 K (92 0C). This waste heat can be utilized for desalination. By using MMED desalination system, this waste heat can be used to produce fresh water (distillate) from sea water feed. The amount of the destillate produced is 48663 ton per day by using 15 distillation effects. The performance ratio value is 2.8727 kg/MJ by using 15 distillation effects.Keywords: PCMSR, discharged heat, MMED desalination PCMSR (Passive Compact Molten Salt Reactor) merupakan salah satu tipe dari Reaktor Nuklir Maju. PCMSR memiliki keuntungan berupa penggunaan bahan bakar yang sangat efisisien, sifat keselamatan tinggi dan sekaligus efisiensi termodinamika yang tinggi. Hal ini disebabkan oleh kemampuan pembiakan bahan bakar, sifat keselamatan melekat serta sistem keselamatan yang secara total bersifat pasif. Desain PCMSR terdiri dari tiga modul, yaitu modul reaktor, modul turbin dan modul pengelolaan bahan bakar. Analisis dilakukan dengan melakukan perhitungan parametrik sistem turbin untuk menghitung efisiensi sistem turbin dan kalor yang tersedia bagi desalinasi. Selanjutnya dilakukan perhitungan neraca massa dan neraca energi proses desalinasi untuk menghitung jumlah distilat yang dihasilkan serta umpan air laut yang dibutuhkan. Modul turbin PCMSR dirancang untuk dapat dioperasikan pada suhu siklus maksimum 1373 K (1200 0C) dan suhu siklus minimum 333 K (60 0K). Perhitungan parametrik menunjukkan bahwa perbandingan tekanan turbin yang optimum adalah 4,3 dan memberikan efisiensi maksimum sebesar 56 % dengan menggunakan 4 tingkat turbin serta 4 tingkat kompresor yang dilengkapi dengan rekuperator. Pada kondisi optimum ini, turbin PCMSR dengan daya keluaran 250 MWe menghasilkan kalor sisa sebesar 196 MWth dengan suhu fluida pendingin berkisar dari 327 K (54 0C) hingga 368 K (95 0C). Kalor sisa ini dapat digunakan untuk memproduksi air tawar dengan cara desalinasi air laut. Dengan menggunakan sistem desalinasi MMED, jumlah destilat yang dapat dihasilkan adalah 48663 ton per hari dengan menggunakan 15 efek destilasi. Nilai rasio performansi adalah 2,8722 dengan menggunakan 15 efek destilasi. Kata kunci: PCMSR, kalor sisa, MMED desalinasi
AN ANALYSIS OF PUMP POWER CALCULATION OF CONVERTED BANDUNG TRIGA REACTOR WITH PIPE ROUTING THROUGH DELAY TANK Veronica Indriati Sri Wardhani; Budi Santoso
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 20, No 3 (2018): Oktober 2018
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1080.533 KB) | DOI: 10.17146/tdm.2018.20.3.4623

Abstract

The Bandung TRIGA 2000 Reactor has been widely used for conducting training, researches and isotop production since 1965. This reactor have to be decommissioned due no further fuelproduced by original vendor. Therefore, conversion of cylinder fuel into plate is needed. PT INUKI has been able to produce its own plate type fuel so that by changing the reactor core which was originally cylindrical into a square shape or converting the fuel element from cylindrical to plate type operation of the Bandung TRIGA 2000 reactor can be maintained for a long time. On this conversion, the reactor's cooling system will change, which initially by natural convection to forced convection, while the direction of the cooling flow changes as well, which initially from bottom to top becomes from top to bottom. If the directional cooling flow of the plate TRIGA reactor system is made from top to bottom, without changing of piping, the result is a high exposure of Nitrogen-16 radiation on the surface of the reactor tank, therefore a delay tank is needed. By the new pipe routing  system, it is necessary to reanalyze on determining the pump power requirements. The pump should be able to supply this energy. In other words, the total head produced by the pump must be equal to the total head required by the system. If the total system head data and coolant flow rate, and considering the efficiency of the pump and the motor drive pump have been analysed, so the pump power requirements can be calculated. The calculation result shows that the amount of pump power required to drain the cooling fluid in the primary system is 35 kW or 47 HP.Keywords: conversion, cooling, plate type, pipe routing, pumps ANALISIS Perhitungan Daya Pompa Konversi Reaktor TRIGA Bandung DENGAN Routing Perpipaan Melalui Tanki Tunda. Reaktor TRIGA 2000 Bandung merupakan fasilitas yang sudah banyak digunakan untuk training, penelitian dan produksi isotop sejak tahun 1965. Reaktor ini terancam padam karena tidak ada lagi bahan bakar yang diproduksi oleh pemasok awalnya. Oleh karena itu langkah konversi reaktor TRIGA 2000 berbahan bakar silinder ke bahan bakar pelat harus dilakukan. PT INUKI telah mampu memproduksi bahan bakar tipe pelat sendiri, sehingga dengan mengubah teras reaktor yang semula berbentuk silinder menjadi bentuk persegi atau melakukan konversi reaktor dari bahan bakar tipe silinder ke tipe pelat  operasi reaktor TRIGA 2000 Bandung dapat dipertahankan untuk waktu yang lama. Pada konversi ini, sistem pendinginan reaktor akan berubah, yang semula secara konveksi alamiah, menjadi konveksi paksa, sementara arah aliran pendingin berubah juga, yang semula dari bawah ke atas menjadi dari atas ke bawah. Jika pada sistem reaktor TRIGA pelat arah alirannya dibuat dari atas ke bawah, tanpa adanya perubahan perpipaan akan berakibat paparan radiasi Nitrogen-16 di permukaan tangki reaktor menjadi tinggi, oleh karena itu diperlukan tanki tunda. Pada keadaan sistem perpipaan yang baru ini perlu dilakukan analisis kembali untuk menentukan kebutuhan daya pompa. Pompa harus mampu memasok energi yang diperlukan ini. Dengan kata lain, head total yang dihasilkan oleh pompa harus sama dengan head total yang diperlukan oleh sistem. Jika data total head sistem dan laju aliran pendingin, serta mempertimbangkan effisiensi pompa dan motor penggerak pompa telah diperoleh, maka kebutuhan daya pompa dapat dihitung. Hasil perhitungan menunjukkan bahwa daya pompa yang diperlukan untuk mengalirkan sistem pendingin primer adalah sebesar 35 kW atau 47 Hp.Kata kunci: konversi, pendingin,  tipe pelat, routing perpipaan, pompa.
PERFORMA NEUTRONIK BAHAN BAKAR LiF-BeF2-ThF4-UF4 PADA SMALL MOBILE-MOLTEN SALT REACTOR S. N. Rokhman; Andang Widiharto; Kusnanto Kusnanto
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 13, No 3 (2011): Oktober 2011
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (686.124 KB)

Abstract

Telah dilakukan analisis terhadap performa neutronik bahan bakar garam lebur LiF-BeF2-ThF4-UF4 pada Small Mobile-Molten Salt Reactor (SM-MSR). Penyesuaian konfigurasi teras dan temperatur operasi harus dilakukan untuk penggunaan bahan bakar baru tersebut agar mencapai keff > 1 dan CR (conversion ratio) > 1 pada fraksi 0,5% 233U, 20% 232Th, 28% Li, 51,5% Be. Setelah didapat nilai keff ≈ 1 dan CR ≈ 1, dilakukan analisis pengaruh perubahan Th terhadap Be dan Be terhadap Li yang terlihat dalam perubahan parameter keff dan CR. Setelah itu fraksi 233U divariasi antara 0,5–0,46% untuk memperoleh keff > 1 dan CR > 1. Dalam perhitungan koefisien reaktifitas temperatur (αT), temperatur teras dinaikkan sebesar +25K dan +50K., dan untuk koefisien reaktifitas void (αV), densitas bahan bakar dikurangi hingga 90%. Hasil perhitungan menunjukkan bahwa pengurangan Th terhadap Be menyebabkan penurunan nilai CR dan naiknya keff akibat berkurangnya material fertil. Sebaliknya penambahan Be terhadap Li mengakibatkan terjadi kenaikan nilai keff dan menurunkan CR, akibat laju serapan Li lebih besar dari Be. Pada 5 (lima) fraksi 233U dalam rentang 0,5–0,49%, hasil perhitungan keff dan CR masing-masing bervariasi dalam rentang 1,00001 - 1,00327 dan 1,00016 - 1,00731. Untuk faktor puncak daya (PPF), hasil perhitungan memberikan nilai dalam rentang 2,4311 -2,4714. Sedangkan untuk parameter keselamatan, koefisien reaktivitas temperatur (αT) dan reaktivitas void (αV) masingmasing bernilai negatif dalam rentang 4,972×10-5 - 5,909×10-5 dan 2,596×10-2- 2,8287×10-2 ∆k/k/K. Dapat disimpulkan bahwa teras SM-MSR memberikan nilai negatif di kedua koefisien reaktivitas tersebut untuk setiap fraksi,, sehingga memenuhi kriteria keselamatan dan keselamatan melekat.Kata kunci: SM-MSR (small mobile-molten salt reactor), bahan bakar LiF-BeF2-ThF4-UF4, keselamatan melekat, koefisien reaktivitas temperatur, koefisien reaktivitas void The analysis of neutronic performance has been carried out for the molten salt fuel LiF-BeF2-ThF4-UF4 on a Small Mobile-Molten Salt Reactor (SM-SMR). The core configurations and operating temperature should be adjusted in using the new fuel in order to get the calculated keff and CR (conversion ratio) are > 1 in the fraction of 0.5% 233U, 20% 232Th, 28% Li, 51.5% Be. After obtained that keff and CR close to 1, then the analysis of changes in the Th to Be and Be to Li are carried out, it indicates the changes of keff and CR. Then the 233U fraction is varied between 0.5–0.46% to obtain the condition keff > 1 and CR > 1. To determine the temperature coefficient of reactivity (αT),the temperature of core is changed about +25K dan +50K. To determine the void reactivity coefficient (αV), fuel density is reduced to 90%. The result shows that the reduction of Th causes the decrease of CR and increase of keff due to the number fertile material is less. The addition of Be to Li will make the keff is increase and the CR is decrease, because the macroscopic absorption cross section of Li is greater than Be. From the five 233U composition in the ranges 0.5–0.46%, the calculated keff and CR varies in the range of 1.00001 – 1.00327 and 1.00016 – 1.00731, respectively. For power peaking factor (PPF), the calculation results give the value in the range of 2.4311 - 2.4714. However, for the safety parameters, the negative temperature reactivity coefficient (αT) and negative void reactivity CR (αV) in the range of 4.972×10-5 – 5.909×10-5 and 2.596×10-2 - 2,8287×10-2 ∆k/k/K, respectively. It can be concluded that the SM-MSR core has negative value for those reactivity for all fractions, so the core fulfill the safety criteria and inherent safety. Keywords: small mobile molten salt reactor (SM-MSR), LiF-BeF2-ThF4-UF4 fuel, inherent safety, temperature coefficient reactivity, void coefficient reactivity.

Page 9 of 23 | Total Record : 225


Filter by Year

2010 2024


Filter By Issues
All Issue Vol 26, No 2 (2024): June 2024 Vol 26, No 1 (2024): February 2024 Vol 25, No 3 (2023): October 2023 Vol 25, No 2 (2023): June 2023 Vol 25, No 1 (2023): February 2023 Vol 24, No 3 (2022): October 2022 Vol 24, No 2 (2022): June 2022 Vol 24, No 1 (2022): February (2022) Vol 23, No 3 (2021): October (2021) Vol 23, No 2 (2021): June 2021 Vol 23, No 1 (2021): FEBRUARY 2021 Vol 22, No 3 (2020): OCTOBER 2020 Vol 22, No 2 (2020): June 2020 Vol 22, No 1 (2020): February 2020 Vol 21, No 3 (2019): October 2019 Vol 21, No 2 (2019): JUNI 2019 Vol 21, No 1 (2019): February 2019 Vol 20, No 3 (2018): Oktober 2018 Vol 20, No 2 (2018): JUNI 2018 Vol 20, No 1 (2018): Februari 2018 Vol 19, No 3 (2017): Oktober 2017 Vol 19, No 2 (2017): Juni 2017 Vol 19, No 1 (2017): Februari 2017 Vol 18, No 3 (2016): Oktober 2016 Vol 18, No 2 (2016): Juni 2016 Vol 18, No 1 (2016): Februari 2016 Vol 17, No 3 (2015): Oktober 2015 Vol 17, No 2 (2015): Juni 2015 Vol 17, No 1 (2015): Pebruari 2015 Vol 16, No 3 (2014): Oktober 2014 Vol 16, No 2 (2014): Juni 2014 Vol 16, No 1 (2014): Pebruari 2014 Vol 15, No 3 (2013): Oktober 2013 Vol 15, No 2 (2013): Juni 2013 Vol 15, No 1 (2013): Pebruari 2013 Vol 14, No 3 (2012): Oktober 2012 Vol 14, No 2 (2012): Juni 2012 Vol 14, No 1 (2012): Pebruari 2012 Vol 13, No 3 (2011): Oktober 2011 Vol 13, No 2 (2011): Juni 2011 Vol 13, No 1 (2011): Pebruari 2011 Vol 12, No 3 (2010): Oktober 2010 Vol 12, No 2 (2010): Juni 2010 Vol 12, No 1 (2010): Pebruari 2010 More Issue