cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
Department of Statistic, Faculty of Science and Mathematics , Universitas Diponegoro Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro Gedung F lt.3 Tembalang Semarang 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Gaussian
Published by Universitas Diponegoro
ISSN : -     EISSN : 23392541     DOI : -
Core Subject : Education,
Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM UNDIP.
Arjuna Subject : -
Articles 733 Documents
PEMODELAN DATA KEMISKINAN PROVINSI JAWA TENGAH MENGGUNAKAN FIXED EFFECT SPATIAL DURBIN MODEL Siska Alvitiani; Hasbi Yasin; Mochammad Abdul Mukid
Jurnal Gaussian Vol 8, No 2 (2019): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (885.482 KB) | DOI: 10.14710/j.gauss.v8i2.26667

Abstract

Based on data from the Central Statistics Agency, Central Java has 4,20 million people (12,23%) poor population in 2017 with Rp333.224,00 per capita per month poverty line. So, Central Java has got the second rank after East Java as the province which has the highest poor population in indonesia in 2017. In this research use the fixed effects spatial durbin model method for modeling poor population in each city in Central Java at 2014-2017. The spatial durbin model is a spatial regression model which contains a spatial dependence on dependent variable and independent variable. If the spatial dependence on dependent variable or independent variables is ignored, the resulting coefficient estimator will be biased and inconsistent. The fixed effect is one of the panel data regression models which assumes a different intercept value at each observation but fixed at each time, and slope coefficient is constant. The advantage of using fixed effects in spatial panel data regression is able to know the different characteristics in each region. The dependent variable used is poor population in each city in Central Java, and the independent variable is Minimum Wage, Life Expectancy, School Participation Rate 16-18 Years, Expected Years of Schooling, Total Population, and Per Capita Expenditure. The results of the analysis shows that the fixed effects spatial durbin model is significant and can be used. The variables that significantly affect the model are the Life Expectancy and Expected Years of Schooling, and the coefficient of determination (R2) is 99.95%. Keywords: Poverty, Spatial, Panel Data, Fixed Effects Spatial Durbin Model
KLASIFIKASI TINGKAT KELANCARAN NASABAH DALAM MEMBAYAR PREMI DENGAN MENGGUNAKAN METODE REGRESI LOGISTIK ORDINAL DAN NAÏVE BAYES (Studi Kasus pada Asuransi AJB Bumiputera Tanjung Karang Lampung) Ria Sutitis; Suparti Suparti; Dwi Ispriyanti
Jurnal Gaussian Vol 4, No 3 (2015): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (341.885 KB) | DOI: 10.14710/j.gauss.v4i3.9489

Abstract

In the insurance companies a problem that often arises is the amount of customer debt in paying premiums, so it needs a system that can classify customers in the group not well, less smoothly, and smooth in paying premiums. Used two methods to perform the classification of payment premium status which is Regression Logistics Ordinal and Naïve Bayes. Variables used in determining whether a payment premium status are gender, marital status, age, work, income, insurance period, and the payment of premium. In Regression Logistics Ordinal, significant variables to the model are gender, marital status, age, insurance period, and the payment of premium. For significant variables used in the classification. Payment premium status of the data processing methods of Regression Logistics Ordinal with accuracy obtained is equal to 50.90% and the Naïve Bayes method obtained is equal to 55.41%. Based on the level of accuracy, the classification of data payment premium status of insurance AJB Bumiputera Tanjung Karang Lampung using the Naïve Bayes method has a greater degree of accuracy than the Regression Logistics Ordinal method. Keywords: Payment Premium Status, Classification, Naïve Bayes, Regression Logistics Ordinal
PEMILIHAN MODEL REGRESI POLINOMIAL LOKAL DAN SPLINE UNTUK ANALISIS DATA INFLASI DI JAWA TENGAH Elyas Darmawan; Suparti Suparti; Moch. Abdul Mukid
Jurnal Gaussian Vol 3, No 2 (2014): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (595.089 KB) | DOI: 10.14710/j.gauss.v3i2.5910

Abstract

Inflation becomes one of important problems as parameter of economic growth and determiner factor for government in formulating fiscal, monetary and nonmonetary policy. But, these days the policies were arranged can’t give the positive response to inflation pressure in the future.  Therefore, the prediction of inflation rates are needed. Inflation rates are predicted by nonparametric regression approach because of the fluctuation of inflation which can’t be solved by classic time series models. In this research, the best nonparametric regression models are selected between local polynomial and spline regression to predict Central Java Inflation movement in 2014. Based on analysis, the best nonparametric regression is spline order 2, knot points are 5,37; 5,44; 5,59 and 9,01 with GCV 0,4367286. By using that model, the prediction of Central Java inflation got down since October 2013 until February 2014 on level 7% and March until December 2014 on level 6%.
ANALISIS KLASTER METODE WARD DAN AVERAGE LINKAGE DENGAN VALIDASI DUNN INDEX DAN KOEFISIEN KORELASI COPHENETIC (Studi Kasus: Kecelakaan Lalu Lintas Berdasarkan Jenis Kendaraan Tiap Kabupaten/Kota di Jawa Tengah Tahun 2018) Sisca Indah Pratiwi; Tatik Widiharih; Arief Rachman Hakim
Jurnal Gaussian Vol 8, No 4 (2019): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.8.4.486-495

Abstract

Based on Central Java Regional Police data, traffic accidents from 2017 to 2018 increased from 17.522 to 19.016 or 8,54 percent. To reduce the number of traffic accidents in Central Java, the initial step was carried out by grouping districts/cities that had the same accident level characteristics based on vehicle type with cluster analysis. The ward and average linkage method is a hierarchical cluster analysis method. ward method can maximize cluster homogeneity. While the average linkage method can generate clusters with small cluster variants. In this study using a measure of squared euclidean distance to measure the similarity between pairs of objects. To determine the quality of clustering results, the validation dunn index and cophenetic coefficients corelation are used. Based on the results of the clustering, the optimal number of clusters is obtained at q = 5 for the average linkage method with the results of validation dunn index = 0,08571196 and the rcoph = 0,687458. Keywords: Accidents, Cluster Analysis, Ward Method, Average linkage, Squared Euclidean Distance, Dunn Index, Cophenetic Correlation Coefficient
ANALISIS KUALITAS PELAYANAN DENGAN MENGGUNAKAN FUZZY SERVQUAL, KUADRAN IPA, DAN INDEKS PGCV Rosyidah, Hanik; Wuryandari, Triastuti; Rusgiyono, Agus
Jurnal Gaussian Vol 4, No 4 (2015): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (447.578 KB) | DOI: 10.14710/j.gauss.v4i4.10223

Abstract

Quality of service (service quality) require attention in the field of service. A service is considered and perceived as good if it can meet the customer’s requirement and expectation. This study aims to determine the suitability and student’s expectation of existing services and to determine which services should be prioritized to be improved . The method used is the Servqual gap scores to determine the level of customer satisfaction or provided service based on expectations and performance. The Importance-Performance Analysis’s method and Potential Gain Customer Value (PGCV) to determine the priority of criteria of the service that must be improved. Servqual calculation results indicate a mismatch between perceptions and student’s expectation which is -0,0724. By using IPA quadrant shows that the main indicators for priority services is an indicator of the school environment’s cleanliness. PGCV shows that there are nine indicators of service which becomes the next priorities. Keywords : Service quality, IPA, PGCV, satisfaction, expectation, performance
MODEL ASURANSI KENDARAAN BERMOTOR MENGGUNAKAN DISTRIBUSI MIXED POISSON Tina Diningrum; Yuciana Wilandari; Rukun Santoso
Jurnal Gaussian Vol 1, No 1 (2012): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (762.122 KB) | DOI: 10.14710/j.gauss.v1i1.916

Abstract

Motor vehicle insurance is a form of protection of motor vehicles owned by the insured. One of the activities in insurance companies is claim. Claim is risk of loss claim is paid by the insurance company to the insured. Analysis of motor vehicle insurance claims typically uses poisson distribution approach. Nevertheless in many cases of motor vehicle insurance claim, the value of variance greater than the mean value. In this case overdispersed has been going on the assumption poisson distribution. If the poisson distribution continued to be used when going overdispersed, so the poisson distribution is inefficient because it affects the error standard. To solve the problem can be used mixed Poisson distribution.  This final project used two mixed Poisson distribution which is a mixture of gamma poison known as negative binomial distribution and poisson-exponential mixture known as a geometric distribution. Carried out on the data motor vehicle claim in PT. Jasa Asuransi Indonesia, Semarang branch year 2010 to 2011 it is estimated that of the 100 vehicle type Car policyholders aged <1 year will be 2 claims per year.
ANALISIS RISIKO INVESTASI SAHAM TUNGGAL SYARIAH DENGAN VALUE AT RISK (VAR) DAN EXPECTED SHORTFALL (ES) Saepudin, Yunus; Yasin, Hasbi; Santoso, Rukun
Jurnal Gaussian Vol 6, No 2 (2017): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (429.738 KB) | DOI: 10.14710/j.gauss.v6i2.16956

Abstract

One measure that can be used to estimate risk is Value at Risk (VaR). Although VaR is very popular, it has several weakness that VaR not coherent causes the lack of sub-additive. To overcome the weakness in VaR, an alternative risk measure called Expected Shortfall (ES) can be used.  The porpose of this research objective are to estimate risk by ES and by using VaR with Monte Carlo simulation. The data we used are the closing price of Unilever Indonesia stocks that consistently get into Jakarta Islamic Index (JII). To make VaR become easier for people to understand, an application is made using GUI in Matlab. The Expected Shortfall results from the calculation using 99% confidence level that may be experienced is at 0.039415 show that the risk exceed the VaR it is at 0.034245.  For 95% confidence level that may be experienced is at 0.030608 show that the risk exceed the VaR it is at 0.024471. For 90% confidence level that may be experienced is at 0.026110 show that the risk exceed the VaR it is at 0.019172. Show that the greater the level of confidence that is used the greater the risk will be borne by the investor.Keywords: Risk, Value at Risk (VaR), JII, Expected Shortfall (ES).
ANALISIS SISTEM ANTRIAN PADA LAYANAN PENGURUSAN PASPOR DI KANTOR IMIGRASI KELAS I SEMARANG Purina Pakurnia Artiguna; Sugito Sugito; Abdul Hoyyi
Jurnal Gaussian Vol 3, No 4 (2014): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (463.608 KB) | DOI: 10.14710/j.gauss.v3i4.8091

Abstract

Queue is something that can not be separated in everyday life. Almost all services will form a queue, including passport treatment services at the Immigration Office Class I Semarang.To solve the problems associated with the queue, queuing system model needs to be determined in accordance with the conditions and characteristics queue of the service facility at the Immigration Office Class I Semarang appropriately. So it can be known the measure of system performance to create an effective and efficient service. Based on the data analysis of the six (6) counters work, obtained queuing system model that occurs at the Immigration Office Class I Semarang is, (M/M/2)   queuing model for Passports Taking Counter and Customer Service Counter,  queuing model for file transfer counter and payment transfer counter, and  queuing model for photos counter and interview counter. The effectiveness of the applicant’s passport service process can be determined by calculating the average number of applicants in the system and queue, calculates the average time spent in the system and queue, and calculates the probability of a server that is not serving an applicant. Keywords : Queuing system model, Passport’s services, Size of system performanceANALISIS SISTEM ANTRIAN PADA LAYANAN PENGURUSAN PASPOR  DI KANTOR IMIGRASI KELAS I SEMARANG
KLASIFIKASI RUMAH LAYAK HUNI DI KABUPATEN BREBES DENGAN MENGGUNAKAN METODE LEARNING VECTOR QUANTIZATION DAN NAIVE BAYES Simatupang, Fitri Juniaty; Wuryandari, Triastuti; Suparti, Suparti
Jurnal Gaussian Vol 5, No 1 (2016): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (659.428 KB) | DOI: 10.14710/j.gauss.v5i1.11033

Abstract

House is a very basic need for everyone besides food and clothing. House can reflect the level of welfare and the level of health of its inhabitants. The advisability of a house as a good shelter can be seen from the structure and facilities of buildings.  This research aims to analyze the classification of livable housing and determine the criteria of houses uninhabitable. The statistical method used are the Learning Vector Quantization and Naive Bayes. The data used in this final project are data of Survei Sosial Ekonomi Nasional (Susenas) Kor Keterangan Perumahan in 2014 Quarter 1 district of Kabupaten Brebes. In this research, the data divided into training data and testing data with the proportion that gives the highest accurate is 95% for training data and 5% for testing data. Training data will be used to generate the model and pattern formation, while testing data used to evaluate how accurate the model or pattern formed in classifying data through confusion tables. The results of analysis showed that the Learning Vector Quantization method gives 71,43% of classification accuracy, while Naive Bayes method gives 95,24% of classification accuracy. The Naive Bayes method has better classification accuracy than the Learning Vector Quantization method.Keywords: House, Learning Vector Quantization, Naive Bayes, Classification
ANALISIS PEMILIHAN MEREK TELEPON SELULER PADA MAHASISWA UNIVERSITAS DIPONEGORO DENGAN METODE REGRESI LOGISTIK POLITOMUS Maralika Yundya Sari; Triastuti Wuryandari; Yuciana Wilandari
Jurnal Gaussian Vol 2, No 1 (2013): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (660.93 KB) | DOI: 10.14710/j.gauss.v2i1.2743

Abstract

Telepon seluler (ponsel) merupakan alat telekomunikasi dua arah yang memiliki mobilitas sangat tinggi. Merek-merek ponsel yang beredar di Indonesia yaitu Nokia, Blackberry, Samsung, Sony Ericsson, merek China dan merek lain. Faktor-faktor yang diduga mempengaruhi mahasiswa Universitas Diponegoro dalam membeli sebuah merek ponsel adalah usia, jenis kelamin, nama merek, harga, fitur, desain dan gaya serta kinerja. Pengambilan sampel penelitian menggunakan salah satu teknik dari non probability sampling, yaitu teknik purposive sampling. Untuk menganalisis permasalahan ini digunakan analisis regresi logistik politomus. Berdasarkan uji signifikansi model dan parameter, diketahui usia, nama merek, harga, fitur, desain dan gaya serta kinerja berpengaruh terhadap pemilihan merek ponsel. Estimasi probabilitas terbesar untuk merek Nokia, Blackberry, Samsung, Sony Ericsson, merek China dan merek lain masing-masing adalah sebesar 96.83%, 94.26%, 86.98%, 93.45%, 86.07% dan 99.99%. Kata Kunci:    ponsel, purposive sampling, regresi logistik politomus

Filter by Year

2012 2024


Filter By Issues
All Issue Vol 13, No 1 (2024): Jurnal Gaussian Vol 12, No 4 (2023): Jurnal Gaussian Vol 12, No 3 (2023): Jurnal Gaussian Vol 12, No 2 (2023): Jurnal Gaussian Vol 12, No 1 (2023): Jurnal Gaussian Vol 11, No 4 (2022): Jurnal Gaussian Vol 11, No 3 (2022): Jurnal Gaussian Vol 11, No 2 (2022): Jurnal Gaussian Vol 11, No 1 (2022): Jurnal Gaussian Vol 10, No 4 (2021): Jurnal Gaussian Vol 10, No 3 (2021): Jurnal Gaussian Vol 10, No 2 (2021): Jurnal Gaussian Vol 10, No 1 (2021): Jurnal Gaussian Vol 9, No 4 (2020): Jurnal Gaussian Vol 9, No 3 (2020): Jurnal Gaussian Vol 9, No 2 (2020): Jurnal Gaussian Vol 9, No 1 (2020): Jurnal Gaussian Vol 8, No 4 (2019): Jurnal Gaussian Vol 8, No 3 (2019): Jurnal Gaussian Vol 8, No 2 (2019): Jurnal Gaussian Vol 8, No 1 (2019): Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian Vol 7, No 3 (2018): Jurnal Gaussian Vol 7, No 2 (2018): Jurnal Gaussian Vol 7, No 1 (2018): Jurnal Gaussian Vol 6, No 4 (2017): Jurnal Gaussian Vol 6, No 3 (2017): Jurnal Gaussian Vol 6, No 2 (2017): Jurnal Gaussian Vol 6, No 1 (2017): Jurnal Gaussian Vol 5, No 4 (2016): Jurnal Gaussian Vol 5, No 3 (2016): Jurnal Gaussian Vol 5, No 2 (2016): Jurnal Gaussian Vol 5, No 1 (2016): Jurnal Gaussian Vol 4, No 4 (2015): Jurnal Gaussian Vol 4, No 3 (2015): Jurnal Gaussian Vol 4, No 2 (2015): Jurnal Gaussian Vol 4, No 1 (2015): Jurnal Gaussian Vol 3, No 4 (2014): Jurnal Gaussian Vol 3, No 3 (2014): Jurnal Gaussian Vol 3, No 2 (2014): Jurnal Gaussian Vol 3, No 1 (2014): Jurnal Gaussian Vol 2, No 4 (2013): Jurnal Gaussian Vol 2, No 3 (2013): Jurnal Gaussian Vol 2, No 2 (2013): Jurnal Gaussian Vol 2, No 1 (2013): Jurnal Gaussian Vol 1, No 1 (2012): Jurnal Gaussian More Issue