cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
Department of Statistic, Faculty of Science and Mathematics , Universitas Diponegoro Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro Gedung F lt.3 Tembalang Semarang 50275
Location
Kota semarang,
Jawa tengah
INDONESIA
Jurnal Gaussian
Published by Universitas Diponegoro
ISSN : -     EISSN : 23392541     DOI : -
Core Subject : Education,
Jurnal Gaussian terbit 4 (empat) kali dalam setahun setiap kali periode wisuda. Jurnal ini memuat tulisan ilmiah tentang hasil-hasil penelitian, kajian ilmiah, analisis dan pemecahan permasalahan yang berkaitan dengan Statistika yang berasal dari skripsi mahasiswa S1 Departemen Statistika FSM UNDIP.
Arjuna Subject : -
Articles 733 Documents
KLASIFIKASI CITRA DIGITAL BUMBU DAN REMPAH DENGAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN) Isna Wulandari; Hasbi Yasin; Tatik Widiharih
Jurnal Gaussian Vol 9, No 3 (2020): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v9i3.27416

Abstract

The recognition of herbs and spices among young generation is still low. Based on research in SMK 9 Bandung, showed that there are 47% of students that did not recognize herbs and spices. The method that can be used to overcome this problem is automatic digital sorting of herbs and spices using Convolutional Neural Network (CNN) algorithm. In this study, there are 300 images of herbs and spices that will be classified into 3 categories. It’s ginseng, ginger and galangal. Data in each category is divided into two, training data and testing data with a ratio of 80%: 20%. CNN model used in classification of digital images of herbs and spices is a model with 2 convolutional layers, where the first convolutional layer has 10 filters and the second convolutional layer has 20 filters. Each filter has a kernel matrix with a size of 3x3. The filter size at the pooling layer is 3x3 and the number of neurons in the hidden layer is 10. The activation function at the convolutional layer and hidden layer is tanh, and the activation function at the output layer is softmax. In this model, the accuracy of training data is 0.9875 and the loss value is 0.0769. The accuracy of testing data is 0.85 and the loss value is 0.4773. Meanwhile, testing new data with 3 images for each category produces an accuracy of 88.89%. Keywords: image classification, herbs and spices, CNN. 
ESTIMASI CADANGAN KLAIM MENGGUNAKAN GENERALIZED LINEAR MODEL (GLM) DAN COPULA Yuciana Wilandari; Sri Haryatmi Kartiko; Adhitya Ronnie Effendie
Jurnal Gaussian Vol 9, No 4 (2020): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v9i4.29260

Abstract

In the articles of this will be discussed regarding the estimated reserves of the claim using the Generalized Linear Model (GLM) and Copula. Copula is a pair function distribution marginal becomes a function of distribution of multivariate. The use of copula regression in this article is to produce estimated reserves of claims. Generalized Linear Model (GLM) used as a marginal model for several lines of business. In research it is used three kinds of line of business that is individual, corporate and professional. The copula used is the Archimedean type of copula, namely Clayton and Gumbel copula. The best copula selection method is done using Akaike Information Criteria (AIC). Maximum Likelihood Estimation (MLE) is used to estimate copula parameters. The copula model used is the Clayton copula as the best copula. The parameter estimation results are used to obtain the estimated reserve value of the claim.
KLASIFIKASI STATUS KEMISKINAN RUMAH TANGGA DENGAN METODE SUPPORT VECTOR MACHINES (SVM) DAN CLASSIFICATION AND REGRESSION TREES (CART) MENGGUNAKAN GUI R (Studi Kasus di Kabupaten Wonosobo Tahun 2018) Lutfia Nuzula; Alan Prahutama; Arief Rachman Hakim
Jurnal Gaussian Vol 9, No 4 (2020): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v9i4.29449

Abstract

The poor are people who have average monthly expenditures per capita below the poverty line. Wonosobo District became the poorest district in Central Java in 2011-2018, although the percentage of poor people has decreased every year. It cannot be separated from the efforts of the Wonosobo District Government to overcome poverty through various programs. This study classified households in Wonosobo District in 2018 as poor and non-poor based on influencing factors. This study used the Support Vector Machines (SVM) method to be compared with the Classification and Regression Trees (CART) method. It used the data from the 2018 National Socio-Economic Survey of Central Java with a total of 795 observations. Result of the research using the SVM method and the RBF kernel, the classification accuracy reaches 89.82% then the classification accuracy using the CART method reaches 87.08%. GUI designed by RShiny package can make easier for users to analyze the SVM and CART with the valid output. 
ESTIMASI VALUE AT RISK PORTOFOLIO SAHAM MENGGUNAKAN METODE GARCH-COPULA (Studi Kasus : Harga Penutupan Saham Harian Unilever Indonesia dan Kimia Farma Periode 1 Januari 2013- 31 Desember 2016) Lingga Bayu Prasetya; Dwi Ispriyanti; Alan Prahutama
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28867

Abstract

Any investment in the stock market will earn returns accompanied by risks. Return and risk has a mutual correlation that equilibrium. The formation of a portfolio is intended to provide a lower risk or with the same risk but provide a higher return. Value at Risk (VaR) is a instrument to analyze risk management. Time series model used in stock return data that it has not normal distribution and heteroscedastisicity is Generalized Autoregressive Conditional Heteroscedasticity (GARCH). GARCH-Copula is a combined method of GARCH and Copula. The Copula method is used in joint distribution modeling because it does not require the assumption of normality of the data and can capture tail dependence between each variable. This research uses return data from stock closing prices of Unilever Indonesia and Kimia Farma period January 1, 2013 until December 31, 2016. Copula model is selected based on the highest likelihood log value is Copula Clayton. Value at Risk estimates of Unilever Indonesia and Kimia Farma's stock portfolio on the same weight were performed using Monte Carlo simulation with backtesting of 30 days period data at 95% confidence level. Keywords : Stock, Risk, Generalized Autoregressive Conditional Heteroscedasticity (GARCH), Copula, Value at Risk
PERBANDINGAN METODE K-NEAREST NEIGHBOR DAN ADAPTIVE BOOSTING PADA KASUS KLASIFIKASI MULTI KELAS Ade Irma Prianti; Rukun Santoso; Arief Rachman Hakim
Jurnal Gaussian Vol 9, No 3 (2020): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v9i3.28924

Abstract

The company's financial health provides an indication of company’s performance that is useful for knowing the company's position in industrial area. The company's performance needs to be predicted to knowing the company's progress. K-Nearest Neighbor (KNN) and Adaptive Boosting (AdaBoost) are classification methods that can be used to predict company's performance. KNN classifies data based on the proximity of the data distance while AdaBoost works with the concept of giving more weight to observations that include weak learners. The purpose of this study is to compare the KNN and AdaBoost methods to find out better methods for predicting company’s performance in Indonesia. The dependent variable used in this study is the company's performance which is classified into four classes, namely unhealthy, less healthy, healthy, and very healthy. The independent variables used consist of seven financial ratios namely ROA, ROE, WCTA, TATO, DER, LDAR, and ROI. The data used are financial ratio data from 575 companies listed on the Indonesia Stock Exchange in 2019. The results of this study indicate that the prediction of company’s performance in Indonesia should use the AdaBoost method because it has a classification accuracy of 0,84522 which is greater than the KNN method’s accuracy of 0,82087. Keywords: company’s performance, classification, KNN and AdaBoost, classification accuracy. 
PEMODELAN INDEKS HARGA KONSUMEN DI JAWA TENGAH DENGAN METODE GENERALIZED SPACE TIME AUTOREGRESSIVE SEEMINGLY UNRELATED REGRESSION (GSTAR-SUR) Mega Fitria Andriyani; Abdul Hoyyi; Hasbi Yasin
Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v7i4.28859

Abstract

The Generalized Space Time Autoregressive (GSTAR) model with Seemingly Unrelated Regression (SUR) estimation method or often called GSTAR-SUR is more efficient to be used for residual correlation than Ordinary Least Square (OLS) estimation method. The SUR estimation method utilizes residual correlation information to improve the estimated efficiency resulting in a smaller standard error. The purpose of this research is to get the GSTAR-SUR model according to Consumer Price Index (CPI) data in four regencies or cities in Central Java namely Purwokerto, Surakarta, Semarang, and Tegal. Based on the assumed white noise assumption, the smallest MAPE and RMSE averages, the best model chosen in this research is the GSTAR-SUR(11)I(1) model with the heavy of normalized cross-correlation with the average MAPE value of 0.4455% and RMSE value of 0.80582. The best model obtained explains that the CPI data in Purwokerto, Semarang, and Tegal not only influenced by the previous time but also influenced by the locations. Meanwhile, the CPI data in Surakarta is only influenced by the previous time, but it is not affected by other locations. Keywords: SUR, OLS, Consumer Price Index
KOMPUTASI GUI-R UNTUK PEMODELAN REGRESI NONPARAMETRIK BIRESPON POLINOMIAL LOKAL PADA PENGARUH SUKU BUNGA BI TERHADAP INDEKS HARGA SAHAM GABUNGAN DAN KURS USD Rudi Saputro Setyo Purnomo; Suparti Suparti; Sudarno Sudarno
Jurnal Gaussian Vol 9, No 3 (2020): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v9i3.28911

Abstract

Economy is one of important indicator of development country. Capital market is one of important tool in economy. The development of the capital market in Indonesian can be seen based on the composite stock price index (CSPI). Other than capital market, international trade is an important tool in the economy. Existence of the international trade generates exchange rate, one of which is USD exchange rate. Exchange rate can be increased and weakened, so it’s stability needs to be maintained. One of the factor that can influence CSPI and USD exchange rate is the BI interest rate. To be able to predict the value of CSPI and USD exchange rate then do the birespon regression modelling because between CSPI and USD exchange rate there are relationship. The regression model approach  which used in this research is local polynomial. This approach has high adaptability with data. To make the modelling easier so this research arrange Graphycal User Interface (GUI) by using R software. The local polynomial birespon regression is applied to CSPI and USD exchange rate data based on BI interest rate by using GUI. The optimal modal is obtained by General Cross Validation (GCV) optimation. The optimal model is model by combination of sequences two and three, bandwidths 6 and 2,7, and local points 5,75 and 6. The value of R Square is 66,68% and the mean absolute percentage error (MAPE) is 4,0798%. This MAPE shows that the optimal model has very high accuration in prediction the data because this value of MAPE less than 10%.Keywords: CSPI, USD exchange rate, BI interest rate, birespon, local polynomial, GUI.
PERBANDINGAN MODEL REGRESI KEGAGALAN PROPORSIONAL DARI COX MENGGUNAKAN METODE EFRON DAN EXACT Asri Lutfia Silmi; Sudarno Sudarno; Puspita Kartikasari
Jurnal Gaussian Vol 9, No 4 (2020): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v9i4.29008

Abstract

Cox proportional hazard regression analysis is one of statistical methods that is often used in survival analysis to determine the effect of independent variables on the dependent variable in the form of survival time. Survival time starts from the beginning of the study until the event occurs or has reached the end of the study. The Cox proportional hazard regression model does not require information about the distribution that underlies the survival time but there is an assumption of proportional hazard that must be met. The purpose of this study is to determine the factors that influence the survival time of coronary heart disease. Ties are often found in survival data, including the survival data used in this study. Ties is an event when there are two or more individuals who experience a failure at the same time or have the same survival time value. The Efron and Exact method approach is used to overcome the presence of ties that can cause problems in the estimation of parameters associated with determining the members of the risk set. The results showed that the variables of diabetes mellitus, family history, and platelets significantly affected the survival time of CHD patients for both methods. The best model obtained is the Exact method because it has smaller AIC value of 383,153 compared to the AIC value of the Efron method of 393,207. 
IMPLEMENTASI SUBSET AUTOREGRESSIVE MENGGUNAKAN PAKET FITAR Tomi Ardi; Rukun Santoso; Alan Prahutama
Jurnal Gaussian Vol 6, No 4 (2017): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v6i4.30385

Abstract

Time series data analysis is one of the important points in statistics that is a time-dependent analysis. The commonly used model for time series data is ARIMA (Autoregressive Integrated Moving Average) or often also called the Box-Jenkins time series method. A model of ARIMA used in time clock data forecasting is the AR subset (autoregressive). The AR subset model is suitable for a long time series with a more than 5th order lag. The statistical software used is the R. time series AR subset approach on R using the FitAR package. The main function of the FitAR package is SelectModel and FitAR. SelectModel function to get the model automatically while FitAR is used to determine the temporary suspect model. Data used in the form of dataset contained in package FitAR that is SeriesA. The SeriesA data is data about the chemical concentration process observed every 2 hours for 17 days. SeriesA is processed using FitAR package so that the best model is AR [1,2,7].Keywords : Time Series, Time Series Non-stasioner, Subset AR, FitAR Package
PEMODELAN METODE BROWN’S DOUBLE EXPONENTIAL SMOOTHING (B-DES) DAN BROWN’S WEIGHTED EXPONENTIAL MOVING AVERAGE (B-WEMA) MENGGUNAKAN OPTIMASI LEVENBERG-MARQUARDT PADA JUMLAH WISATAWAN DI JAWA TENGAH Dilla Retno Deswita; Abdul Hoyyi; Tatik Widiharih
Jurnal Gaussian Vol 9, No 3 (2020): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.v9i3.27956

Abstract

The tourism sector is one of the national development priority sectors because it contributes to foreign exchange earnings, the development of business areas, and the absorption of investment and labor. In 2018 the tourism sector will become the second largest foreign exchange earner after oil palm. Foreign exchange contributed by the tourism sector in 2018 was US $ 19.29 billion, an increase of 15.4%. The increase in contributions was driven by an increase in the number of foreign tourist arrivals by 12.58%, domestic tourists by 12.37%, and from investment. Therefore it is necessary to study the forecasting of the number of tourists after seeing the great potential generated from the tourism sector. The data forecast is data on the number of tourists in Central Java, both foreign and domestic data. Both data shows the tendency of an upward trend pattern. So that both data can be analyzed using B-DESmethods (Brown's Double Exponential Smoothing) and B-WEMA (Brown's Weighted Exponential Moving Average)that are optimized with LM (Levenberg-Marquardt). Both methods are able to analyze trend patterned data without assumptions making it easier in the analysis process. In addition, the two methods in previous studies were able to produce a small forecasting accuracy. The MAPE (Mean Absolute Percentage Error) value out sample is used to compare the forecasting results of the two methods. The results of the implementation of LM optimization on the data of the number of domestic tourists obtained the optimal parameter value of the B-DES method is 0.21944386 with MAPE out sample 16.26516% and B-WEMA method is 0.219441 with MAPE out sample 16.26515%. While the data on the number of foreign tourists obtained the optimal parameter value of the B-DES method was 0.26213368 with the MAPE out of the sample 23.61278% and the B-WEMA method was 0.26213367 with the MAPE out the sample 23.61278%. This means that both methods have a good level of forecasting accuracy in the data on the number of domestic tourists and an adequate level of accuracy in the data on the number of foreign tourists. Keywords : B-DES, B-WEMA, Levenberg-Marquardt, Tourists in Central Java

Filter by Year

2012 2024


Filter By Issues
All Issue Vol 13, No 1 (2024): Jurnal Gaussian Vol 12, No 4 (2023): Jurnal Gaussian Vol 12, No 3 (2023): Jurnal Gaussian Vol 12, No 2 (2023): Jurnal Gaussian Vol 12, No 1 (2023): Jurnal Gaussian Vol 11, No 4 (2022): Jurnal Gaussian Vol 11, No 3 (2022): Jurnal Gaussian Vol 11, No 2 (2022): Jurnal Gaussian Vol 11, No 1 (2022): Jurnal Gaussian Vol 10, No 4 (2021): Jurnal Gaussian Vol 10, No 3 (2021): Jurnal Gaussian Vol 10, No 2 (2021): Jurnal Gaussian Vol 10, No 1 (2021): Jurnal Gaussian Vol 9, No 4 (2020): Jurnal Gaussian Vol 9, No 3 (2020): Jurnal Gaussian Vol 9, No 2 (2020): Jurnal Gaussian Vol 9, No 1 (2020): Jurnal Gaussian Vol 8, No 4 (2019): Jurnal Gaussian Vol 8, No 3 (2019): Jurnal Gaussian Vol 8, No 2 (2019): Jurnal Gaussian Vol 8, No 1 (2019): Jurnal Gaussian Vol 7, No 4 (2018): Jurnal Gaussian Vol 7, No 3 (2018): Jurnal Gaussian Vol 7, No 2 (2018): Jurnal Gaussian Vol 7, No 1 (2018): Jurnal Gaussian Vol 6, No 4 (2017): Jurnal Gaussian Vol 6, No 3 (2017): Jurnal Gaussian Vol 6, No 2 (2017): Jurnal Gaussian Vol 6, No 1 (2017): Jurnal Gaussian Vol 5, No 4 (2016): Jurnal Gaussian Vol 5, No 3 (2016): Jurnal Gaussian Vol 5, No 2 (2016): Jurnal Gaussian Vol 5, No 1 (2016): Jurnal Gaussian Vol 4, No 4 (2015): Jurnal Gaussian Vol 4, No 3 (2015): Jurnal Gaussian Vol 4, No 2 (2015): Jurnal Gaussian Vol 4, No 1 (2015): Jurnal Gaussian Vol 3, No 4 (2014): Jurnal Gaussian Vol 3, No 3 (2014): Jurnal Gaussian Vol 3, No 2 (2014): Jurnal Gaussian Vol 3, No 1 (2014): Jurnal Gaussian Vol 2, No 4 (2013): Jurnal Gaussian Vol 2, No 3 (2013): Jurnal Gaussian Vol 2, No 2 (2013): Jurnal Gaussian Vol 2, No 1 (2013): Jurnal Gaussian Vol 1, No 1 (2012): Jurnal Gaussian More Issue