cover
Contact Name
Jati Sasongko Wibowo
Contact Email
jatisw@edu.unisbank.ac.id
Phone
+6281325297663
Journal Mail Official
dinamik@edu.unisbank.ac.id
Editorial Address
Jl. Tri Lomba Juang No. 1 Semarang
Location
Kota semarang,
Jawa tengah
INDONESIA
Dinamik
Published by Universitas Stikubank
ISSN : 08549524     EISSN : 26231786     DOI : 10.35315/dinamik.v28i1
Core Subject : Science,
The Jurnal DINAMIK aims to: Promote a comprehensive approach to informatics engineering and management incorporating viewpoints of different applications (computer graphics, computer networks and security, computer vision, computational intelligence, databases, big data, IT project management, and other fields relevant to information technology. Encourage scientists, practicing engineers, and others to conduct research and similar activities.
Articles 455 Documents
ANALISIS PREDIKTIF TREN WABAH DEMAM BERDARAH MENGGUNAKAN MODEL PEMBELAJARAN MESIN BERBASIS RAPIDMINER Herriyawan, Herriyawan; Timur, Muhammad Bagus Bintang; Wibowo, Arief
Dinamik Vol 31 No 1 (2026)
Publisher : Universitas Stikubank

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35315/dinamik.v31i1.10356

Abstract

Demam berdarah dengue merupakan tantangan kesehatan masyarakat yang terus berulang di wilayah tropis, termasuk Indonesia. Penelitian ini bertujuan untuk memprediksi jumlah kasus tahunan dengan memanfaatkan lima algoritma pembelajaran mesin, yaitu Regresi Linier, Decision Tree, Random Forest, Support Vector Machine (SVM), dan Neural Network. Data historis tahun 2017–2024 diolah menggunakan teknik windowing deret waktu untuk menghasilkan fitur lag yang sesuai bagi pembelajaran terawasi. Evaluasi kinerja dilakukan melalui metrik Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), serta koefisien determinasi (R²). Model Decision Tree menunjukkan performa paling unggul pada sebagian besar indikator. Prediksi untuk tahun 2025 mengindikasikan adanya peningkatan moderat jumlah kasus. Namun, rendahnya nilai R² pada seluruh model mengisyaratkan perlunya pendekatan multivariat yang lebih kompleks dengan mempertimbangkan faktor iklim, lingkungan, dan demografi. Hasil penelitian ini menegaskan pentingnya kualitas data dan pemilihan fitur yang tepat dalam peramalan epidemiologis guna mendukung perencanaan kesehatan yang lebih efektif.
INTEGRASI CHACHA20 DAN STEGANOGRAFI LSB DALAM SISTEM KEAMANAN INFORMASI BERBASIS CITRA DIGITAL Bintang, Bagus; Iqbal, Muhammad; Kusumaningsih, Dewi
Dinamik Vol 31 No 1 (2026)
Publisher : Universitas Stikubank

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35315/dinamik.v31i1.10358

Abstract

Meningkatnya ketergantungan pada sistem komunikasi digital telah memperkuat kebutuhan akan metode yang andal untuk melindungi data sensitif dari akses tidak sah. Studi ini memperkenalkan mekanisme keamanan terintegrasi yang menggabungkan enkripsi ChaCha20 dengan steganografi citra Least Significant Bit (LSB), yang menargetkan perlindungan data berbasis citra digital. ChaCha20, sebuah cipher aliran modern yang dikenal akan kecepatan dan keamanannya, digunakan untuk mengenkripsi pesan teks biasa (plaintext), menghasilkan ciphertext yang sangat aman. Data terenkripsi kemudian disematkan ke dalam citra sampul — khususnya, logo universitas — menggunakan teknik LSB, yang mengubah bit paling tidak signifikan dari nilai piksel untuk menyembunyikan informasi tanpa memengaruhi kualitas citra secara signifikan. Pendekatan dua lapis ini memastikan kerahasiaan dan penyembunyian informasi sensitif. Sistem ini dievaluasi menggunakan metrik objektif seperti Rasio Sinyal terhadap Derau Puncak (PSNR) dan Indeks Kesamaan Struktural (SSIM) untuk menilai fidelitas citra setelah penyisipan data. Hasil menunjukkan bahwa metode ini mempertahankan integritas visual (PSNR > 50 dB) sekaligus memungkinkan ekstraksi data yang akurat. Integrasi ChaCha20 dan steganografi LSB menawarkan solusi yang ringan, aman, dan efektif untuk perlindungan informasi digital, khususnya cocok untuk komunikasi akademis atau kelembagaan di mana gambar logo berfungsi sebagai pembawa konten terenkripsi yang tersembunyi.
Sistem Informasi Penjualan dan Penyedia Layanan Informasi berbasis Web pada Toko CV Kia Jaya menggunakan Laravel Firmansyah, Ardira; Putra, Ade Dwi
Dinamik Vol 31 No 1 (2026)
Publisher : Universitas Stikubank

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35315/dinamik.v31i1.10360

Abstract

CV KIA is a shop engaged in the field of computer sales and services, coming directly to make transactions and provide computer service information services. So there are obstacles that are quite time consuming and transportation costs for customers to find out information on goods, stock of goods, and the process of purchasing goods because customers have to come directly to the store. Product information on CV Kia cannot be updated in real time so that there is a delay in calculating stock of goods. The method used in this study is the prototype development method and is designed using UML. This system uses two programming languages, namely PHP. Implementation using the Xampp application, and MySQL. The results of this study are the design and creation of a web-based sales information system. The system that is built will also later facilitate the sales transaction process which can later reduce the level of competition with the outside market. This system displays information about product sales, and can carry out the sales transaction process so that customers do not need to come to the store to get information and make product purchases. The results of testing that has been carried out involving 10 Respondents that the conclusion of the quality of the feasibility of the software produced has a percentage of success with an average total of 100%. Keywords: Sales, Prototype, PHP, Information Systems, Sublime Text
Tinjauan Sistematis Teknologi Radar Mimo dan Kecerdasan Buatan untuk Deteksi Nyeri Non-Invasif Lintas Populasi Wijaya, Sky Xavier; Kenichiro, Yoshie; Felim, Filbert; HS, Christnatalis; Prabowo, Agung
Dinamik Vol 31 No 1 (2026)
Publisher : Universitas Stikubank

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35315/dinamik.v31i1.10361

Abstract

Deteksi nyeri secara objektif merupakan tantangan penting dalam dunia medis, terutama bagi pasien yang tidak mampu menyampaikan rasa sakitnya secara verbal, seperti bayi, lansia, atau penderita gangguan komunikasi. Teknologi non- invasif berbasis sensor menjadi solusi potensial untuk mengatasi keterbatasan metode subjektif. Penelitian ini bertujuan meninjau secara sistematis literatur terkini mengenai penerapan Radar MIMO dan algoritma kecerdasan buatan dalam deteksi nyeri non-invasif. Metode yang digunakan adalah Systematic Literature Review (SLR) dengan pedoman PRISMA 2020, melalui penelusuran basis data IEEE Xplore, ScienceDirect, PubMed, Google Scholar, dan SpringerLink untuk periode 2021– 2025. Dari hasil seleksi diperoleh 17 artikel inklusi yang mencakup penggunaan Radar MIMO, UNBC-McMaster, BioVid, Medical Imaging (CT/MRI), Radar SISO, serta studi review, survey, bibliometrik, dan teoretis. Dari sisi algoritma, CNN dan SVM menjadi pendekatan paling dominan, diikuti Neural Network dan metode lain, dengan tren yang mengarah pada penggunaan multimodal untuk meningkatkan akurasi. Hasil penilaian kualitas dengan GRADE menunjukkan mayoritas studi berkualitas sedang, dengan keterbatasan utama pada ukuran sampel kecil, pelabelan nyeri yang belum konsisten, bias populasi, serta kurangnya validasi klinis nyata. Kesimpulannya, Radar MIMO dan algoritma deep learning memiliki potensi besar untuk deteksi nyeri non-invasif. Namun, penelitian lanjutan perlu difokuskan pada pembangunan dataset yang lebih inklusif, standarisasi pelabelan nyeri, serta pengujian dalam konteks klinis, dengan memperhatikan aspek etika dan privasi agar teknologi ini dapat diimplementasikan secara luas dalam layanan kesehatan.
Implementasi Deep Learning CNN untuk Menerjemahkan Sistem Isyarat Bahasa Indonesia (SIBI) ke Teks Pramuda, Tintou; Mirza, A Haidar
Dinamik Vol 31 No 1 (2026)
Publisher : Universitas Stikubank

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35315/dinamik.v31i1.10371

Abstract

Communication is a fundamental aspect of human life. However, individuals with hearing and speech impairments often face barriers in communicating with the general public. The Indonesian Sign System (SIBI) serves as a communication solution for the deaf and speech-impaired community in Indonesia, yet public understanding of SIBI remains limited. To address this issue, this study aims to develop an automatic translation model from SIBI sign language into Indonesian text by utilizing Deep Learning technology, specifically the Convolutional Neural Network (CNN) algorithm. CNN was chosen for its ability to effectively recognize visual patterns, making it suitable for processing hand gesture images in sign language. This research involved collecting and classifying a dataset of hand images based on the alphabet or words in SIBI, which were then used to train the CNN model. The designed CNN model was built to accurately classify hand signs and translate them into Indonesian text. The results of this study have the potential to serve as a supportive solution for inclusive communication between the deaf community and the wider public, and can be further developed for contextual sentence translation. Keywords: Indonesian Sign System (SIBI), CNN, Deep Learning, Automatic Translation, Inclusive Communication
Evaluasi Kinerja Model Long Short-Term Memory dan Gated Recurrent Unit untuk Prediksi Magnitude Gempa Bumi Di Indonesia Nugraha, Giananda Saktika; Priyambodo, Pamungkas Haryo; Rahmayuna, Novita; Hidayati, Nurtriana
Dinamik Vol 31 No 1 (2026)
Publisher : Universitas Stikubank

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35315/dinamik.v31i1.10375

Abstract

This study aims to evaluate and compare the performance of two neural network architectures under the Recurrent Neural Network (RNN) category, namely Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM), in predicting earthquake magnitude in Indonesia. The dataset used consists of daily earthquake magnitude records from 2008 to 2023, preprocessed into time series format and normalized using the MinMax method. The training process was conducted using various combinations of batch size and epoch, and evaluated using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and relative prediction accuracy. The evaluation results show that LSTM with a batch size of 32 and 50 epochs provides the best prediction performance, achieving a MAE of 0.2227 and 93.65% accuracy. Meanwhile, GRU performed optimally at a batch size of 64 and 50 epochs, with a MAE of 0.2229 and 93.66% accuracy. The prediction visualization shows that LSTM offers greater stability and precision in tracking actual data patterns. These findings indicate that LSTM holds stronger potential for supporting earthquake prediction systems based on time series data.
Optimasi Sistem Credit Scoring Pembiayaan pada Lembaga Keuangan Mikro dengan Neural Network Integrasi Sample Bootstrapping dan Weighted PCA Wahjuningsih, Tri Pudji; Setiawan, Tri Agus; Ilyas, Agus; Subagyo, Ahmad
Dinamik Vol 31 No 1 (2026)
Publisher : Universitas Stikubank

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35315/dinamik.v31i1.10381

Abstract

Credit scoring is an important element in decision-making for providing financing, especially for microfinance institutions. Several methods for predicting credit scoring include Decession Tree, Gradient Boosted, Neural Network, K-NN, and Rule Induction. This study aims to improve the accuracy of financing risk prediction by efficiently integrating historical data. The Neural Network (NN) algorithm is a machine learning algorithm consisting of neurons (nodes) connected to each other in several layers (input, hidden, and output). NN is used for pattern recognition, classification, regression, and complex non-linear modeling. The NN algorithm has the advantage of working well on large and diverse data and unstructured data. However, the NN algorithm has weaknesses such as overfitting and data dependence. In this study, the integration of the Sample Bootstrapping and Weighted Principal Component Analysis (PCA) methods is proposed to improve optimal accuracy in the NN algorithm. The Sample Bootstrapping method is used to reduce the amount of training data to be processed. The Weighted PCA method is used to reduce attributes. This study uses a financing customer dataset. The results of the study show that the integration of the NN algorithm with Sample Bootstrapping and Weighted PCA resulted in an accuracy increase of 1-3% (97%-99%) compared to other algorithms. Therefore, it can be concluded that the integration of the NN algorithm with Sample Bootstrapping and Weighted PCA produces better accuracy than other algorithms
Analisis kerentanan Website SMAN 1 Banjar Agung menggunakan OWASP ZAP Kishori, Kishori; Dwi Satria, Muhammad Najib
Dinamik Vol 31 No 1 (2026)
Publisher : Universitas Stikubank

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35315/dinamik.v31i1.10406

Abstract

Website security is an important aspect of designing a website and managing web systems. However, many developers still pay little attention to security aspects from the early stages of development. In fact, the website that has been built will be the target of attacks by hackers at any time. Therefore, this research aims to analyze the vulnerability of the SMAN 1 Banjar Agung website based on the OWASP Top 10 standard. The research method was conducted through vulnerability assessment using OWASP ZAP tools with the stages of spidering, passive scanning, and active scanning. This test allows identification of vulnerabilities such as SQL Injection, Cross-Site Scripting (XSS), and security configuration weaknesses. The scan results showed eight vulnerabilities, consisting of two medium, three low, and three informational vulnerabilities. Although the risk level is low, the website still requires mitigation through the application of security headers, dependency updates, and removal of sensitive information to make the system more secure and stable.
Evaluasi Management Requests dan Incidents Mutu Layanan Jaringan Wifi Menggunakan COBIT 2019 Jaganatha, Jaganatha; Ulum, Faruk
Dinamik Vol 31 No 1 (2026)
Publisher : Universitas Stikubank

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35315/dinamik.v31i1.10409

Abstract

This study compares two service management models to evaluate the governance of the Wi-Fi network in Dusun Gita Nagari Baru. The main objective is to measure user satisfaction and service quality following the implementation of the COBIT 2019 framework, particularly the DSS02 domain (Manage Service Requests and Incidents). The research employed a mixed methods approach, using historical-comparative document analysis and Likert scale questionnaires distributed to 21 active users. The data were analysed through gap analysis, capability level mapping, and descriptive statistical analysis to identify performance differences between two periods. The results indicate that most indicators in the COBIT 2019 capability model are at Level 4 (Predictable), one indicator reaches Level 5 (Optimising), and another indicator is at Level 3. Indicators directly related to the DSS02 domain, such as ease of reporting, response speed, schedule accuracy, and repair time, demonstrate the most significant improvements. These findings support the hypothesis that implementing COBIT 2019-based governance for DSS02 can enhance user satisfaction and the quality of Wi-Fi network services in rural areas. This study also provides practical recommendations for the sustainable management of digital infrastructure in areas with limited access.
Implementasi Metode Vikor dalam Pengambilan Keputusan Supplier Terbaik pada Parfume Corner Oktami, Yuga; Sulistiani, Heni
Dinamik Vol 31 No 1 (2026)
Publisher : Universitas Stikubank

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35315/dinamik.v31i1.10410

Abstract

Selecting the right supplier is a critical aspect of supply chain management, especially in a retail business like Parfume Corner, which relies on product quality, availability, and on-time delivery. This study aims to implement the VIKOR (VlseKriterijumska Optimizacija I Kompromisno Resenje) method as a multi-criteria decision-making approach to determine the best perfume supplier. The VIKOR method was chosen because of its ability to handle conflicts between criteria and produce optimal compromise solutions. The evaluation criteria used include product quality, price, on-time delivery, after-sales service, and flexibility in negotiations. Data were collected from five potential suppliers through observation, interviews, and historical transaction documents. The analysis results showed that one supplier obtained the lowest VIKOR index score, thus being determined as the best compromise solution. The implementation of the VIKOR method proved effective in providing objective and transparent recommendations, which can support Parfume Corner's strategic decisions in building long-term partnerships with reliable suppliers. This approach can also be adapted by similar businesses to improve procurement efficiency and quality. The test results obtained were that in the expert test a Good value was obtained, namely 80%, while in the system test a Very Good conclusion was obtained, namely 100%.