TELKOMNIKA (Telecommunication Computing Electronics and Control)
Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of submissions that TELKOMNIKA has received during the last few months the duration of the review process can be up to 14 weeks. Communication Engineering, Computer Network and System Engineering, Computer Science and Information System, Machine Learning, AI and Soft Computing, Signal, Image and Video Processing, Electronics Engineering, Electrical Power Engineering, Power Electronics and Drives, Instrumentation and Control Engineering, Internet of Things (IoT)
Articles
63 Documents
Search results for
, issue
"Vol 17, No 4: August 2019"
:
63 Documents
clear
Seller reputation impact on sales performance in public e-marketplace Bukalapak
M. Ammar Fauzan;
Amna Shifia Nisafani;
Arif Wibisono
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/telkomnika.v17i4.11780
Seller reputation system (SRS) is an online facility in the public e-marketplace to assess how trustworthy a seller is. SRS becomes important for customers to increase transactional confidence and help customers avoiding untrustworthy sellers. Previous research indicates that different countries with different cultures will lead to different results on how seller reputation influence sales performance. This study aims to investigate the impact of seller reputation on the number of sales in the context of the Indonesian market. This research uses Bukalapak as the case study, which the majority of its customers are Indonesian. Further, this study employ multiple regression analysis on smartphone sales data. The result shows that in Indonesian online market context, the number of seller’s followers does not affect sales number. Furthermore, price and seller positive reviews have a significant impact on sales performance. This study provides insight for sellers in the Indonesian marketplace on how to improve sales performance based on seller reputation.
Performance enhancement of maximum power point tracking for grid-connected photovoltaic system under various gradient of irradiance changes
Mario Norman Syah;
Subiyanto Subiyanto
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/telkomnika.v17i4.10335
This paper presents a new variant of smart adaptive algorithm of Maximum Power Point Tracking (MPPT) in the photovoltaic (PV) system. The algorithm was adopted from Modified Perturb and Observe (MP&O). The smart adaptive MPPT is used to search Maximum Power Point (MPP) of the PV system under various irradiance changes. This algorithm incorporates information of current change (ΔI), maximum operating point margin and dynamic perturbation step to prevent MPPT diverging away from the MPP and minimize the steady state oscillation. The smart adaptive MPPT algorithm performance is compared with the dI-P&O and conventional P&O to prove its effectiveness. The comparison is performed under the various gradient of irradiance change. It was found that, for all the tests, the smart adaptive algorithm scheme improve the tracking efficiency under various gradients of irradiance changes and increase the efficiency of extraction power from PV system.
Zinc oxide nanoparticles based passive saturable absorber for pulse generation in fiber laser
Nurul Alina Afifi Norizan;
Fauzan Ahmad;
Muhammad Quisar Lokman;
Sulaiman Wadi Harun
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/telkomnika.v17i4.12778
A stable passive Q-switched pulsed generation in Erbium doped fiber laser by Zinc Oxide nanoparticles embedded in polyvinyl alcohol (ZnONP-PVA)-based saturable absorber is demonstrated in this paper. The surface morphology and thickness profile of the fabricated film were observed using FESEM and 3D measuring laser microscope with the measured thickness of 12 μm. Meanwhile the its optical properties is characterized using Raman spectroscopy. The developed ZnONP-PVA film, has modulation depth of 7.8% and intensity saturation of 88.97 MW/cm2. The threshold input pump power to generate Q-switched pulse is at 45.4 mW and can be tuned until 92.4 mW before the pulse diminished. The operating wavelength of generated pulse is at 1535 nm with 3 dB bandwidth approximately of 2 nm with exclusion of parasitic continuous wave lasing. As the input pump power was tuned from threshold to maximum value, the recorded pulse train of repetition rate is tunable from 73.53 kHz to 103.10 kHz while the pulse width decreases from 6.8 μs to 4.8 μs. The calculated maximum output power and pulse energy at maximum input pump power was 5.14 mW and 49.85 nJ, respectively. The measured signal to noise ratio was 56 dB indicated that the generated pulse by ZnO NP based passive saturable absorber was stable.
Optical sensor based on dye-sensitized solar cell with tobacco chlorophyll
Eka Maulana;
Rahmadwati Rahmadwati;
Sapriesty Nainy Sari;
Akhmad Sabarudin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/telkomnika.v17i4.12613
Modified optical sensor based on dye-sensittized solar cell has been successfully fabricated to measure the number of light energy. The electric parameters as the sensor output were achieved from the light illuminance as the sensor input. The measured parameter from optical sensor according to the voltage and current output have been characterized to obtain the sensor performance. In this research, the modified sensor is customized from dye-sensitized solar cell with extracted tobacco chlorophyll dye as the photo-catalysator, photo-electrode of titanium dioxide and Iodine solution for redox reaction. The thick layer deposition with selected material is conducted using spin coating method of 1000 rpm. Based on the absorbance measurement, it shows that tobacco dye has the characteristics of visible light absorption in the wavelength of visible light spectra. The analytical result shows that the sensor has the wide linear characteristic in certain light illuminance and the increasing light intensity produces higher electrical parameter output both current and voltage. This sensor has potential prospect to be used as a light sensor and to be competitive fabrication cost.
Novel design of triple-bands EBG
M. K. Abdulhameed;
M. S. Mohamad Isa;
Z. Zakaria;
I. M. Ibrahim;
Mowafak K. Mohsen;
Ahmed M. Dinar;
Mothana L. Attiah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/telkomnika.v17i4.12616
This paper presents a novel design for a triple band electromagnetic band gap (EBG) structures that provides three band gaps, with operating frequency of below 10 GHz, while the ordinary mushroom like EBG structure gives only one band gap. Complexity reduction (reduce the number of unit cells and Vias) was achieved by replacing each four cells of the Mushroom like EBG by the one of double slotted type EBG (DSTEBG) or triple side slotted EBG (TSSEBG). The Mushroom like EBG was further modified by increasing its size and inserting the slots to gain more capacitance and inductance which resulted into triple band stop.The new designs wer compared with bandwidths expressed by other EBGs and -20 dB cut-off frequencies. The size of EBG element and the gap between EBG elements, and slot width were investigated to analyse their effect on the transmission response. The structures were designed from 2.54 mm Rogers RT/Duroid 6010 substrate with relative permittivity of 10.2 and loss tangent of 0.0023. Among the investigated EBGs, the single band mushroom like EBG and the triple band of the TSSEBG demonstrated better bandwidth and lower resonance frequency performance, whereas the DSTEBG showed larger bandwidth for the first and third band. The proposed EBGs could be useful in the antenna design and other microwave circuits.
Discrete liquid level fiber sensor
Muhammad Yusof Mohd Noor;
Ahmad Sharmi Abdullah;
Asrul Izam Azmi;
Mohd Haniff Ibrahim;
Mohd Rashidi Salim;
Norazan Kassim
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/telkomnika.v17i4.12769
A novel simple fiber sensor to sense liquid level is presented. The operation principle is based on the relative Fresnel reflective intensity. The sensor consists of a fiber splitter with the configuration of one input to multiple fiber outputs, i.e. 1×4, 1×8 and 1×12 arrangements that act as a discrete liquid level. A broadband source (BBS) is used as the light source supply. The total reflected power intensity is measured using a power meter. Experimental results show that the power intensity decreases as the level of liquid is increased. The sensor has a simple configuration, low cost, and it can be customized for a wide height measurement range spanning from a few centimeters up to a hundred meters.
Multi-function intelligent robotic in metals detection applications
Nabeel Salih Ali;
Hakim Adil Kadhim;
Dheyaa Mohammed Abdulsahib
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/telkomnika.v17i4.11822
Recent technologies for robotics have been offered an effective and efficient solution to safeguard workers from risks in their work environments. These risks involve radioactive, toxic, explosive and mines. In this paper, design and implement computer robot based on metal detection as well as avoiding obstacles automatically. The proposed wireless controlled robotic vehicle can be used in metal detection applications such as landmine detection, obstacles avoidance, selecting best routing without imposing human's harms and workforce aspects. The robotic wheel can sense the obstacles that positioning at ahead of its path, and also avoids the obstacles forward, left and right of its routes. The robot is controlled by using Bluetooth wireless communication to interface between the controller and the implemented robot. Furthermore, sensor IR (FC-03) for the metal detector and used ultrasonic sensor (HC-SR04) for objects or obstacles sensing. The presented controlled robotic designed for desert and dry soil that can replace the human role in avoiding obstacles and metal detection capabilities. The produced robot was useful due to it can detect metals and avoiding obstacles consecutively besides it was effective to select the best route based on the intelligent technique that adopted, the predefined metals by using an intelligent decision maker for route finder in a flat surface environment.
Breakdown characteristics of polyethylene/silicon nitride nanocomposites
A. Azmi;
K. A. A. Seman;
K. Y. Lau
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/telkomnika.v17i4.12754
Silicon nitride (Si3N4) has been utilized as a nanofiller in polymeric insulation due to its good characteristics in both electrical insulation and thermal conduction properties. In this work, a comparative study was performed between unfilled polyethylene and polyethylene containing different amounts of Si3N4 nanofiller. The study showed that the low density polyethylene (LDPE) added with 15 wt% of Si3N4nanofiller could have higher breakdown strength compared to equivalent LDPE with 10 wt% of Si3N4nanofiller. Morphological characterizations of the nanocomposite samples were performed using field emission electron microscopy (FESEM) and the results showed that the breakdown performance of the investigated materials were affected by the agglomeration of Si3N4 nanoparticles.
Neurocomputing fundamental climate analysis
Rezzy Eko Caraka;
Sakhinah Abu Bakar;
Muhammad Tahmid;
Hasbi Yasin;
Isma Dwi Kurniawan
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/telkomnika.v17i4.11788
Rainfall is a natural phenomenon that needs to be studied more deeply and interesting to be analyzed. It involves numbers of human activities such as aviation, agriculture, fisheries, and also disaster risk reduction. Moreover, the characteristics of rainfall data follows seasonality, fluctuation, not normally distributed and it makes traditional time series challenging to use. Therefore, neurocomputing model can be used as an alternative to extraction information from rainfall data and give high performance also accuracy. In this paper, we give short preview about SST Anomalies in Manado, Northern Sulawesi and at the same time comparing the performance of rainfall forecasting by using three types of neurocomputing methods such as Generalized Regression Neural Network (GRNN), Feed forward Neural Network (FFNN), and Localized Multi Kernel Support Vector Regression (LMKSVR). In a nutshell, all of neurocomputing methods give highly accurate forecasting as well as reach low MAPE FFNN 1.65%, GRNN 2.65% and LMKSVR 0.28%, respectively.
Energy efficient resources allocations for wireless communication systems
Vinsensius Sigit Widhi Prabowo;
Arfianto Fahmi;
Nachwan Mufti Adriansyah;
Nur Andini
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 4: August 2019
Publisher : Universitas Ahmad Dahlan
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
DOI: 10.12928/telkomnika.v17i4.10135
The energy consumption level of the telecommunication process has become a new consideration in resource management scheme. It is becoming a new parameter in the resource management scheme besides throughput, spectral efficiency, and fairness. This work proposes a power control scheme and user grouping method to keep the rational energy consumption level of the resource management scheme. Inverse water-filling power allocation is a power allocation scheme that optimizes the energy efficiency by giving the power to the user which have good channel conditions. The user grouping method becomes the solution for carrier aggregation (CA) scheme that prevents edge cell user get the resources from the high-frequency carrier. This can prevent energy wastage in the transmission process. This power control scheme and user grouping method can optimize the spectral and energy efficiency without increasing the time complexity of the system.