cover
Contact Name
Nizirwan Anwar
Contact Email
nizirwan.anwar@esaunggul.ac.id
Phone
-
Journal Mail Official
telkomnika@ee.uad.ac.id
Editorial Address
Ahmad Yani st. (Southern Ring Road), Tamanan, Banguntapan, Bantul, Yogyakarta 55191, Indonesia
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
TELKOMNIKA (Telecommunication Computing Electronics and Control)
ISSN : 16936930     EISSN : 23029293     DOI : 10.12928
Core Subject : Science,
Submitted papers are evaluated by anonymous referees by single blind peer review for contribution, originality, relevance, and presentation. The Editor shall inform you of the results of the review as soon as possible, hopefully in 10 weeks. Please notice that because of the great number of submissions that TELKOMNIKA has received during the last few months the duration of the review process can be up to 14 weeks. Communication Engineering, Computer Network and System Engineering, Computer Science and Information System, Machine Learning, AI and Soft Computing, Signal, Image and Video Processing, Electronics Engineering, Electrical Power Engineering, Power Electronics and Drives, Instrumentation and Control Engineering, Internet of Things (IoT)
Articles 40 Documents
Search results for , issue "Vol 19, No 4: August 2021" : 40 Documents clear
Deep learning with focal loss approach for attacks classification Yesi Novaria Kunang; Siti Nurmaini; Deris Stiawan; Bhakti Yudho Suprapto
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18772

Abstract

The rapid development of deep learning improves the detection and classification of attacks on intrusion detection systems. However, the unbalanced data issue increases the complexity of the architecture model. This study proposes a novel deep learning model to overcome the problem of classifying multi-class attacks. The deep learning model consists of two stages. The pre-tuning stage uses automatic feature extraction with a deep autoencoder. The second stage is fine-tuning using deep neural network classifiers with fully connected layers. To reduce imbalanced class data, the feature extraction was implemented using the deep autoencoder and improved focal loss function in the classifier. The model was evaluated using 3 loss functions, including cross-entropy, weighted cross-entropy, and focal losses. The results could correct the class imbalance in deep learning-based classifications. Attack classification was achieved using automatic extraction with the focal loss on the CSE-CIC-IDS2018 dataset is a high-quality classifier with 98.38% precision, 98.27% sensitivity, and 99.82% specificity.
Fuzzy clustering means algorithm analysis for power demand prediction at PT PLN Lhokseumawe Muhammad Sadli; Wahyu Fuadi; Faizar Abdurrahman; Nurul Islami; Muhammad Ihsan
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.14941

Abstract

Indonesian National Electricity Company (PT PLN) as the main electric power provider in Lhokseumawe City. In fulfilling the need of electricity supply for the whole requirement, which upscale gradually. The proper forecasting method need to be premeditated. The area that was grouped based on the total of power consists of the four sub districts, namely Banda Sakti, Blang Mangat, Muara Dua and Muara Satu. In this study the fuzzy clustering mean (FCM) Classification was applied in determining the power demand of each area and categorized into a cluster respectively. The data clustering divided into six variable and five classifications of power of customer. Based on clustering step that applied revealed for four different classification of power requirement for future demand, the house hold electricity consumption measured for current consumption 9.588.466 Kw/H and forecast 10.037.248 Kw/H, for Business cluster classification measured 10.107.845 Kw/H and forecast 10.566.854 Kw/H, for industry the power measured 9.195.027 Kw/H and the forecasting revealed 9.638.804 Kw/H, and the last analysis was applied in general cluster classification based on measurement was recorded 9.729.048 Kw/H and forecasted result 10.198.282 Kw/H. this method has shown the better result in term of forecasting method by employing the cluster system in determining future power consumption requirement for the area of Lhokseumawe District.
Optimal resource allocation for route selection in ad-hoc networks Marwa K. Farhan; Muayad S. Croock
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18521

Abstract

Nowadays, the selection of the optimum path in mobile ad hoc networks (MANETS) is being an important issue that should be solved smartly. In this paper, an optimal path selection method is proposed for MANET using the Lagrange multiplier approach. The optimization problem considers the objective function of maximizing bit rate, under the constraints of minimizing the packet loss, and latency. The obtained simulation results show that the proposed Lagrange optimization of rate, delay, and packet loss algorithm (LORDP) improves the selection of optimal path in comparison to ad-hoc on-demand distance vector protocol (AODV). We increased the performance of the system by 10.6 Mbps for bit rate and 0.133 ms for latency.
Rikitake dynamo system, its circuit simulation and chaotic synchronization via quasi-sliding mode control Yi-You Hou; Cheng-Shun Fang; Chang-Hua Lien; Sundarapandian Vaidyanathan; Aceng Sambas; Mustafa Mamat; Muhamad Deni Johansyah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.17700

Abstract

Rikitake dynamo system (1958) is a famous two-disk dynamo model that is capable of executing nonlinear chaotic oscillations similar to the chaotic oscillations as revealed by palaeomagnetic study. First, we detail the Rikitake dynamo system, its signal plots and important dynamic properties. Then a circuit design using Multisim is carried out for the Rikitake dynamo system. New synchronous quasi-sliding mode control (QSMC) for Rikitake chaotic system is studied in this paper. Furthermore, the selection on switching surface and the existence of QSMC scheme is also designed in this paper. The efficiency of the QSMC scheme is illustrated with MATLAB plots.
An automatic screening approach for obstructive sleep apnea from photoplethysmograph using machine learning techniques Smily Jeya Jothi E.; Anitha J.; D. Jude Hemanth
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.19371

Abstract

Obstructive sleep apnea (OSA), a very common sleep disorder remains as an underdiagnosed root cause for several cardiovascular and cerebrovascular diseases. In this paper, we propose an efficient and accurate system that utilizes a single sensor for effective screening of OSA using machine learning algorithms. The automatic screening system involves a photoplethysmogram (PPG) signal, a novel algorithm to detect and remove the corrupted part of the signal, a feature extraction module to extract several features from the PPG waveform and a classifier module which helps in screening for OSA. The elemental idea behind this work is that there is a characteristic relationship between the shape of the PPG waveform and the oxygen desaturation in the apnea patients. The method as described was tested on 285 subjects, inclusive of both normal and apnea patients, and the results were obtained after 10-fold-cross validation of the different machine learning techniques viz., univariate regression, multivariate regression, support vector machine and random forest. The best results in screening OSA were obtained from random forest algorithm with the highest performance (Acc:98.0%, Sen:98.6%, Spec:99.3%) for all the combined features. The proposed work is an effective system for automatic screening of OSA from a single PPG sensor, thereby reducing the need for a very expensive and overnight polysomnography sleep study.
Characterization and structural analysis of RF magnetron sputtered strontium stannate thin films Yusmar Palapa Wijaya; Khairul Anuar Mohamad; Abu Bakar Abdul Rahman; Afishah Alias; Mohammad Syahmi Nordin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18790

Abstract

This paper presents physical and morphology properties of strontium stannate (SrSnO3) perovskite-type as a candidate of an n-type material thin film for organic-inorganic hybrid diode heterojunction for optoelectronics application. Typical wet-process of SrSnO3 deposition produce thick film and having 10-8 S/cm order in conductivity. The SrSnO3 thin films were deposited on ITO glass substrates by RF magnetron sputtering using a purity 99.9% SrSnO3 target with 5.0 mTorr of gas pressure and 100 W of RF power at room temperature. The gas composition of pure argon (75%) and reactive oxygen gas (25%) was used for 60 min. XRD diffraction patterns revealed that the thin films are orthorhombic crystal structure with lattice parameter a=5.7040 Ǻ, b=8.06 Ǻ and c=5.7080 Ǻ with a strong orientation in the (002) direction. SEM images showed that films exhibited uniform surface morphology with a roughness average of Ra=2.258 nm and thickness of 311 nm. The EDX spectrum confirmed the presence of O, Sr, and Sn elements in the films with 75.22%, 8.29%, 16.49% in atomic number, respectively. The films were having a conductivity of 8.33x102 S/cm with low resistivity of 12.4x10-3 W-cm.
Classification using semantic feature and machine learning: Land-use case application Hela Elmannai; Abeer Dhafer AlGarni
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18359

Abstract

Land cover classification has interested recent works especially for deforestation, urban are monitoring and agricultural land use. Traditional classification approaches have limited accuracy especially for non-heterogeneous land cover. Thus, using machine may improve the classification accuracy. The presented paper deals with the land-use scene recognition on very high-resolution remote sensing imagery. We proposed a new framework based on semantic features, handcrafted features and machine learning classifiers decisions. The method starts by semantic feature extraction using a convolutional neural network. Handcraft features are also extracted based on color and multi-resolution characteristics. Then, the classification stage is processed by three learning machine algorithms. The final classification result performed by majority vote algorithm. The idea behind is to take advantages from semantic features and handcrafted features. The second scope is to use the decision fusion to enhance the classification result. Experimentation results show that the proposed method provides good accuracy and trustable tool for land use image identification.
Effect of random sampling on spectrum sensing for cognitive radio networks Asmaa Maali; Hayat Semlali; Sara Laafar; Najib Boumaaz; Abdallah Soulmani
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.20399

Abstract

Cognitive radio is a mechanism allowing dynamic access to spectrum channels. Since its beginnings, researchers have been working on using this inventive technology to control and manage the spectrum resources. Consequently, this research field has been progressing rapidly and important advances have been made. Spectrum sensing is a key function of cognitive radios that helps prevent the harmful interference with licensed users, as well as identifies the available spectrum to improve its utilization. Several spectrum sensing techniques are found in scientific literature. In this paper, we investigate the effect of the random sampling in spectrum sensing. We propose a spectrum sensing approach based on the energy detection and on the maximum eigenvalue detection (MED) combined with random sampling. The performance of the proposed approach is evaluated in terms of the receiver operating characteristics curves and in terms of the detection probability for different values of signal to noise ratio. The obtained results are compared to the uniform sampling case to show the added value of random sampling.
Analysis of hybrid non-linear autoregressive neural network and local smoothing technique for bandwidth slice forecast Mohamed Khalafalla Hassan; Sharifah H. S. Ariffin; Sharifah Kamilah Syed- Yusof; N. Effiyana Ghazali; Mohamed EA Kanona
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.17024

Abstract

The demand for high steady state network traffic utilization is growing exponentially. Therefore, traffic forecasting has become essential for powering greedy application and services such as the internet of things (IoT) and Big data for 5G networks for better resource planning, allocation, and optimization. The accuracy of forecasting modeling has become crucial for fundamental network operations such as routing management, congestion management, and to guarantee quality of service overall. In this paper, a hybrid network forecast model was analyzed; the model combines a non-linear auto regressive neural network (NARNN) and various smoothing techniques, namely, local regression (LOESS), moving average, locally weighted scatterplot smoothing (LOWESS), the Sgolay filter, Robyn loess (RLOESS), and robust locally weighted scatterplot smoothing (RLOWESS). The effects of applying smoothing techniques with varied smoothing windows were shown and the performance of the hybrid NARNN and smoothing techniques discussed. The results show that the hybrid model can effectively be used to enhance forecasting performance in terms of forecasting accuracy, with the assistance of the smoothing techniques, which minimized data losses. In this work, root mean square error (RMSE) is used as performance measures and the results were verified via statistical significance tests.
Detection of brain stroke in the MRI image using FPGA Dheyaa Alhelal; Ahmed Khazal Younis; Ruaa H. Ali Al-Mallah
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 19, No 4: August 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v19i4.18988

Abstract

One of the most important difficulties which doctors face in diagnosing is the analysis and diagnosis of brain stroke in magnetic resonance imaging (MRI) images. Brain stroke is the interruption of blood flow to parts of the brain that causes cell death. To make the diagnosis easier for doctors, many researchers have treated MRI images with some filters by using Matlab program to improve the images and make them more obvious to facilitate diagnosis by doctors. This paper introduces a digital system using hardware concepts to clarify the brain stroke in MRI image. Field programmable gate arrays (FPGA) is used to implement the system which is divided into four phases: preprocessing, adjust image, median filter, and morphological filters alternately. The entire system has been implemented based on Zynq FPGA evaluation board. The design has been tested on two MRI images and the results are compared with the Matlab to determine the efficiency of the proposed system. The proposed hardware system has achieved an overall good accuracy compared to Matlab where it ranged between 90.00% and 99.48%.

Page 1 of 4 | Total Record : 40


Filter by Year

2021 2021


Filter By Issues
All Issue Vol 20, No 3: June 2022 Vol 20, No 2: April 2022 Vol 20, No 1: February 2022 Vol 19, No 6: December 2021 Vol 19, No 5: October 2021 Vol 19, No 4: August 2021 Vol 19, No 3: June 2021 Vol 19, No 2: April 2021 Vol 19, No 1: February 2021 Vol 18, No 6: December 2020 Vol 18, No 5: October 2020 Vol 18, No 4: August 2020 Vol 18, No 3: June 2020 Vol 18, No 2: April 2020 Vol 18, No 1: February 2020 Vol 17, No 6: December 2019 Vol 17, No 5: October 2019 Vol 17, No 4: August 2019 Vol 17, No 3: June 2019 Vol 17, No 2: April 2019 Vol 17, No 1: February 2019 Vol 16, No 6: December 2018 Vol 16, No 5: October 2018 Vol 16, No 4: August 2018 Vol 16, No 3: June 2018 Vol 16, No 2: April 2018 Vol 16, No 1: February 2018 Vol 15, No 4: December 2017 Vol 15, No 3: September 2017 Vol 15, No 2: June 2017 Vol 15, No 1: March 2017 Vol 14, No 4: December 2016 Vol 14, No 3: September 2016 Vol 14, No 2: June 2016 Vol 14, No 1: March 2016 Vol 13, No 4: December 2015 Vol 13, No 3: September 2015 Vol 13, No 2: June 2015 Vol 13, No 1: March 2015 Vol 12, No 4: December 2014 Vol 12, No 3: September 2014 Vol 12, No 2: June 2014 Vol 12, No 1: March 2014 Vol 11, No 4: December 2013 Vol 11, No 3: September 2013 Vol 11, No 2: June 2013 Vol 11, No 1: March 2013 Vol 10, No 4: December 2012 Vol 10, No 3: September 2012 Vol 10, No 2: June 2012 Vol 10, No 1: March 2012 Vol 9, No 3: December 2011 Vol 9, No 2: August 2011 Vol 9, No 1: April 2011 Vol 8, No 3: December 2010 Vol 8, No 2: August 2010 Vol 8, No 1: April 2010 Vol 7, No 3: December 2009 Vol 7, No 2: August 2009 Vol 7, No 1: April 2009 Vol 6, No 3: December 2008 Vol 6, No 2: August 2008 Vol 6, No 1: April 2008 Vol 5, No 3: December 2007 Vol 5, No 2: August 2007 Vol 5, No 1: April 2007 Vol 4, No 3: December 2006 Vol 4, No 2: August 2006 Vol 4, No 1: April 2006 Vol 3, No 3: December 2005 Vol 3, No 2: August 2005 Vol 3, No 1: April 2005 Vol 2, No 1: April 2004 More Issue