cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Bulletin of Electrical Engineering and Informatics
ISSN : -     EISSN : -     DOI : -
Core Subject : Engineering,
Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering.
Arjuna Subject : -
Articles 22 Documents
Search results for , issue "Vol 7, No 3: September 2018" : 22 Documents clear
Development of Respiratory Rate Estimation Technique Using Electrocardiogram and Photoplethysmogram for Continuous Health Monitoring Nazrul Anuar Nayan; Rosmina Jaafar; Nur Sabrina Risman
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (522.018 KB) | DOI: 10.11591/eei.v7i3.1244

Abstract

Abnormal vital signs often predict a serious condition of acutely ill hospital patients in 24 hours. The notable fluctuations of respiratory rate (RR) are highly predictive of deteriorations among the vital signs measured. Traditional methods of detecting RR are performed by directly measuring the air flow in or out of the lungs or indirectly measuring the changes of the chest volume. These methods require the use of cumbersome devices, which may interfere with natural breathing, are uncomfortable, have frequently moving artifacts, and are extremely expensive. This study aims to estimate the RR from electrocardiogram (ECG) and photoplethysmogram (PPG) signals, which consist of passive and non-invasive acquisition modules. Algorithms have been validated by using PhysioNet’s Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II)’s patient datasets. RR estimation provides the value of mean absolute error (MAE) for ECG as 1.25 bpm (MIMIC-II) and 1.05 bpm for the acquired data. MAE for PPG is 1.15 bpm (MIMIC-II) and 0.90 bpm for the acquired data. By using 1-minute windows, this method reveals that the filtering method efficiently extracted respiratory information from the ECG and PPG signals. Smaller MAE for PPG signals results from fewer artifacts due to easy sensor attachment for the PPG because PPG recording requires only one-finger pulse oximeter sensor placement. However, ECG recording requires at least three electrode placements at three positions on the subject’s body surface for a single lead (lead II), thereby increasing the artifacts. A reliable technique has been proposed for RR estimation.
Improving Classification Accuracy Using Clustering Technique Norsyela Muhammad Noor Mathivanan; Nor Azura Md.Ghani; Roziah Mohd Janor
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (335.471 KB) | DOI: 10.11591/eei.v7i3.1272

Abstract

Product classification is the key issue in e-commerce domains. Many products are released to the market rapidly and to select the correct category in taxonomy for each product has become a challenging task. The application of classification model is useful to precisely classify the products. The study proposed a method to apply clustering prior to classification. This study has used a large-scale real-world data set to identify the efficiency of clustering technique to improve the classification model. The conventional text classification procedures are used in the study such as preprocessing, feature extraction and feature selection before applying the clustering technique. Results show that clustering technique improves the accuracy of the classification model. The best classification model for all three approaches which are classification model only, classification with hierarchical clustering and classification with K-means clustering is K-Nearest Neighbor (KNN) model. Even though the accuracy of the KNN models are the same across different approaches but the KNN model with K-means clustering had the shortest time of execution. Hence, applying K-means clustering prior to KNN model helps in reducing the computation time.
Maximum Loadability Enhancement with a Hybrid Optimization Method E. E. Hassan; T. K. A. Rahman; Z. Zakaria; N. Bahaman; M. H. Jifri
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (423.736 KB) | DOI: 10.11591/eei.v7i3.1168

Abstract

Nowadays, a power system is operating in a stressed condition due to the increase in demand in addition to constraint in building new power plants. The economics and environmental constraints to build new power plants and transmission lines have led the system to operate very close to its stability limits. Hence, more researches are required to study the important requirements to maintain stable voltage condition and hence develop new techniques in order to address the voltage stability problem. As an action, most Reactive Power Planning (RPP) objective is to minimize the cost of new reactive resources while satisfying the voltage stability constraints and labeled as Secured Reactive Power Planning (SCRPP). The new alternative optimization technique called Adaptive Tumbling Bacterial Foraging (ATBFO) was introduced to solve the RPP problems in the IEEE 57 bus system. The comparison common optimization Meta-Heuristic Evolutionary Programming and original Bacterial Foraging techniques were chosen to verify the performance using the proposed ATBFO method. As a result, the ATBFO method is confirmed as the best suitable solution in solving the identified RPP objective functions.
Sabah Traditional Chinese Medicine Database Aslina Baharum; Neoh Yee Jin; Shaliza Hayati A. Wahab; Mohd Helmy Abd Wahab; Radzi Ambar; Nurul Hidayah Mat Zain
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (466.489 KB) | DOI: 10.11591/eei.v7i3.1273

Abstract

As technology grows, people tend to use or apply anything digitalized instead of printed, especially for references. This is because the printed form references are not easy to find. Even if the references are found successfully, it has already cost a lot of time, money, energy, etc. At the same time, people also put more emphasize on health issues. They are beginning to be more alert in fields that they have ignored before, such as traditional medicine and Chinese medicine. Based on these two points, it can be said that the effort of transforming Traditional Chinese Medicine (TCM) from printed based reference into online reference as a database is a public beneficial effort. There are a lot of online TCM database outside of Malaysia, especially from the People’s Republic of China, Hong Kong, and Taiwan. Those herbal remedies from overseas are somewhat different from the herbal remedies in Malaysia due to the habits and occurrences of the herbs. Through this project, it is hoped that this database will help the local people to discover and identify the herbs that they could find in the surrounding area. The objectives of this project are to identify the validity of the information of the Sabah TCM using mixed method, to develop the Sabah TCM database, and finally to evaluate the usability of the database designed using meCUE. The methodology used was 4D Appreciative Inquiry Model, which included discovery, dream, design, and destiny phases. The advantage of this model was to take a positive core to make any changes instead of finding the weaknesses of the project. Hopefully through the developed database, local Sabahan can take the advantage in identifying the proper usage of existing herbs in their surroundings.
Estimation of Photovoltaic Module Parameters based on Total Error Minimization of I-V Characteristic M. N. Abdullah; M. Z. Hussin; S. A. Jumaat; N. H. Radzi; Lilik J. Awalin
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (597.456 KB) | DOI: 10.11591/eei.v7i3.1274

Abstract

Mathematical Modelling of photovoltaic (PV) modules is important for simulation and performance analysis of PV system. Therefore, an accurate parameters estimation is necessary. Single-diode and two-diode model are widely used to model the PV system. However, it required to determine several parameters such as series and shunt resistances that not provided in datasheet.  The main goal of PV modelling technique is to obtain the accurate parameters to ensure the I-V characteristic is closed to the manufacturer datasheet. Previously, the maximum power error of calculated and datasheet value are considered as objective to be minimized for both models. This paper proposes the PV parameter estimation model based minimizing the total error of open circuit voltage (VOC), short circuit current (ISC) and maximum power (PMAX) where all these parameters are provided by the manufacturer. The performance of single-diode and two-diode models are tested on different type of PV modules using MATLAB. It found that the two-diode model obtained accurate parameters with smaller error compared to single-diode model. However, the simulation time is slightly higher than single-diode model due extra calculation required.
GA-based Optimisation of a LiDAR Feedback Autonomous Mobile Robot Navigation System Siti Nurhafizah Anual; Mohd Faisal Ibrahim; Nurhana Ibrahim; Aini Hussain; Mohd Marzuki Mustafa; Aqilah Baseri Huddin; Fazida Hanim Hashim
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (385.649 KB) | DOI: 10.11591/eei.v7i3.1275

Abstract

Autonomous mobile robots require an efficient navigation system in order to navigate from one location to another location fast and safe without hitting static or dynamic obstacles. A light-detection-and-ranging (LiDAR) based autonomous robot navigation is a multi-component navigation system consists of various parameters to be configured. With such structure and sometimes involving conflicting parameters, the process of determining the best configuration for the system is a non-trivial task. This work presents an optimisation method using Genetic algorithm (GA) to configure such navigation system with tuned parameters automatically. The proposed method can optimise parameters of a few components in a navigation system concurrently. The representation of chromosome and fitness function of GA for this specific robotic problem are discussed. The experimental results from simulation and real hardware show that the optimised navigation system outperforms a manually-tuned navigation system of an indoor mobile robot in terms of navigation time.
Whale Optimization Algorithm Based Technique for Distributed Generation Installation in Distribution System Mohd Nurulhady Morshidi; Ismail Musirin; Siti Rafidah Abdul Rahim; Mohd Rafi Adzman; Mohamad Hatta Hussain
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (856.127 KB) | DOI: 10.11591/eei.v7i3.1276

Abstract

This paper presents Whale Optimization Algorithm (WOA) Based Technique for Distributed Generation Installation in Transmission System. In this study, WOA optimization engine is developed for the installation of Distributed Generation (DG). Prior to the optimization process, a pre-developed voltage stability index termed Fast Voltage Stability Index (FVSI) was used as an indicator to identify the location for the DG to be installed in the system. Meanwhile, for sizing the DG WOA is employed to identify the optimal sizing. By installing DG in the transmission system, voltage stability and voltage profile can be improved, while power losses can be minimized. The proposed algorithm was tested on 30-bus radial distribution network. Results obtained from the EP were compared with firefly algorithm (FA); indicating better results. This highlights the strength of WOA over FA in terms of minimizing total losses.
A Comparative Study for Different Sizing of Solar PV System under Net Energy Metering Scheme at University Buildings T. M. N. T. Mansur; N. H. Baharudin; R. Ali
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (441.678 KB) | DOI: 10.11591/eei.v7i3.1277

Abstract

Malaysia has moved forward by promoting the use of renewable energy such as solar PV to the public to reduce dependency on fossil fuel-based energy resources. Due to the concern on high electricity bill, Universiti Malaysia Perlis (UniMAP) is keen to install solar PV system as an initiative for energy saving program to its buildings. The objective of this paper is to technically and economically evaluate the different sizing of solar PV system for university buildings under the Net Energy Metering (NEM) scheme. The study involves gathering of solar energy resource information, daily load profile of the buildings, sizing PV array together with grid-connected inverters and the simulation of the designed system using PVsyst software. Based on the results obtained, the amount of solar energy generated and used by the load per year is between 5.10% and 20.20% from the total annual load demand. Almost all solar energy generated from the system will be self-consumed by the loads. In terms of profit gained, the university could reduce its electricity bill approximately between a quarter to one million ringgit per annum depending on the sizing capacity. Beneficially, the university could contribute to the environmental conservation by avoiding up to 2,000 tons of CO2 emission per year.
Dynamic Economic Dispatch Assessment Using Particle Swarm Optimization Technique Muhammad Murtadha Othman; Mohd Affendi Ismail Salim; Ismail Musirin; Nur Ashida Salim; Mohammad Lutfi Othman
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (478.557 KB) | DOI: 10.11591/eei.v7i3.1278

Abstract

This paper presents the application of particle swarm optimization (PSO) technique for solving the dynamic economic dispatch (DED) problem. The DED is one of the main functions in power system planning in order to obtain optimum power system operation and control. It determines the optimal operation of generating units at every predicted load demands over a certain period of time. The optimum operation of generating units is obtained by referring to the minimum total generation cost while the system is operating within its limits. The DED based PSO technique is tested on a 9-bus system containing of three generator bus, six load bus and twelve transmission lines.
Evaluation of Support Vector Machine and Decision Tree for Emotion Recognition of Malay Folklores Mastura Md Saad; Nursuriati Jamil; Raseeda Hamzah
Bulletin of Electrical Engineering and Informatics Vol 7, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (599.337 KB) | DOI: 10.11591/eei.v7i3.1279

Abstract

In this paper, the performance of Support Vector Machine (SVM) and Decision Tree (DT) in classifying emotions from Malay folklores is presented. This work is the continuation of our storytelling speech synthesis work to add emotions for a more natural storytelling. A total of 100 documents from children short stories are collected and used as the datasets of the text-based emotion recognition experiment. Term Frequency-Inverse Document Frequency (TF-IDF) is extracted from the text documents and classified using SVM and DT. Four types of common emotions, which are happy, angry, fearful and sad are classified using the two classifiers. Results showed that DT outperformed SVM by more than 22.2% accuracy rate. However, the overall emotion recognition is only at moderate rate suggesting an improvement is needed in future work. The accuracy of the emotion recognition should be improved in future studies by using semantic feature extractors or by incorporating deep learning for classification.

Page 1 of 3 | Total Record : 22


Filter by Year

2018 2018


Filter By Issues
All Issue Vol 14, No 5: October 2025 Vol 14, No 4: August 2025 Vol 14, No 3: June 2025 Vol 14, No 2: April 2025 Vol 14, No 1: February 2025 Vol 13, No 6: December 2024 Vol 13, No 5: October 2024 Vol 13, No 4: August 2024 Vol 13, No 3: June 2024 Vol 13, No 2: April 2024 Vol 13, No 1: February 2024 Vol 12, No 6: December 2023 Vol 12, No 5: October 2023 Vol 12, No 4: August 2023 Vol 12, No 3: June 2023 Vol 12, No 2: April 2023 Vol 12, No 1: February 2023 Vol 11, No 6: December 2022 Vol 11, No 5: October 2022 Vol 11, No 4: August 2022 Vol 11, No 3: June 2022 Vol 11, No 2: April 2022 Vol 11, No 1: February 2022 Vol 10, No 6: December 2021 Vol 10, No 5: October 2021 Vol 10, No 4: August 2021 Vol 10, No 3: June 2021 Vol 10, No 2: April 2021 Vol 10, No 1: February 2021 Vol 9, No 6: December 2020 Vol 9, No 5: October 2020 Vol 9, No 4: August 2020 Vol 9, No 3: June 2020 Vol 9, No 2: April 2020 Vol 9, No 1: February 2020 Vol 8, No 4: December 2019 Vol 8, No 3: September 2019 Vol 8, No 2: June 2019 Vol 8, No 1: March 2019 Vol 7, No 4: December 2018 Vol 7, No 3: September 2018 Vol 7, No 2: June 2018 Vol 7, No 1: March 2018 Vol 6, No 4: December 2017 Vol 6, No 3: September 2017 Vol 6, No 2: June 2017 Vol 6, No 1: March 2017 Vol 5, No 4: December 2016 Vol 5, No 3: September 2016 Vol 5, No 2: June 2016 Vol 5, No 1: March 2016 Vol 4, No 4: December 2015 Vol 4, No 3: September 2015 Vol 4, No 2: June 2015 Vol 4, No 1: March 2015 Vol 3, No 4: December 2014 Vol 3, No 3: September 2014 Vol 3, No 2: June 2014 Vol 3, No 1: March 2014 Vol 2, No 4: December 2013 Vol 2, No 3: September 2013 Vol 2, No 2: June 2013 Vol 2, No 1: March 2013 Vol 1, No 4: December 2012 Vol 1, No 3: September 2012 Vol 1, No 2: June 2012 Vol 1, No 1: March 2012 List of Accepted Papers (with minor revisions) More Issue