cover
Contact Name
Wahyu Hidayat
Contact Email
azzam@wahyurock.com
Phone
-
Journal Mail Official
jurnal_infinity@stkipsiliwangi.ac.id
Editorial Address
-
Location
Kota cimahi,
Jawa barat
INDONESIA
Jurnal Infinity
ISSN : 20896867     EISSN : 24609285     DOI : -
Core Subject : Education,
Infinity Journal published by STKIP Siliwangi Bandung (IKIP Siliwangi) and Indonesian Mathematics Educators' Society (IMES) publishes original research or theoretical papers about teaching and learning in a mathematics education study program on current science issues.
Arjuna Subject : -
Articles 339 Documents
SEJAUH MANA GURU MENGGUNAKAN METAFORA DALAM KEPEDULIANNYA UNTUK MENINGKATKAN KEMAMPUAN MATEMATIKA SISWA Idrus Alhaddad
Jurnal Infinity Vol 1, No 2 (2012): Volume 1 Number 2, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (204.652 KB) | DOI: 10.22460/infinity.v1i2.p159-168

Abstract

Belajar matematika masih merupakan hal yang sulit bagi siswa, karena disamping memiliki objek kajian yang abstrak, juga berdasarkan pada pola pikir yang deduktif. Untuk membantu siswa dapat memahami bahkan menjadi senang dalam belajar matematika, hal ini tidak terlepas dari peranan guru. Bagi guru, memahami matematika juga merupakan hal yang sulit, dan lebih sulit lagi adalah mengajarkan kepada siswa untuk dapat dipahami. Karena hal itu membutuhkan strategi, metode, dan pendekatan. Dalam pembelajaran matematika banyak hal yang harus diperhatikan. Di antaranya adalah faktor-faktor yang mempengaruhi kegiatan belajar siswa yaitu: pengalaman, kemampuan, kematangan, dan motivasi siswa. Oleh karena itu, baik teori maupun metode dalam pembelajaran harus disesuaikan dengan kondisi siswa. Agar pembelajaran matematis menjadi bermakna dan dimaknai siswa, maka diperlukan cara-cara khusus untuk menjadikan siswa termotivasi belajar matematika. Salah satunya adalah penggunaan Metafora. Metafora dapat dipandang sebagai suatu strategi untuk membantu siswa dalam memahami matematika. Makalah ini akan menyajikan tentang apa sebenarnya metafofa, bagaimana menggunakannya dalam pembelajaran dan contoh penggunaannya serta kelebihan dalam menggunakan metafora Kata kunci : Kepedulian, Metafora, Pembelajaran Matematika   Mathematics, for most of students, is still considered to be a difficult subject to learn because it does not only possess abstract objects of investigation but it is also based on deductive mindset. Enabling students to understand or even be enjoy learning mathematics, then, will demands good teachers’ roles. For teachers, understanding mathematics is also difficult as well. In fact, the most difficult thing for them is how to teach mathematics that can be easily and quickly understood by students. That is why; mathematics teachers need to use exact strategies, methods and approaches. In mathematics learning, there are many things to consider. One of which is factors influencing students’ learning activities, namely: their experience, ability, maturation, and motivation. That is why; we, as teachers, need to create learning methods and theories which are adaptive to students’ condition. In order to create meaningful mathematics learning which in turn students get the real meaning of it at last, then, we need to use special ways for enabling students to get motivated in learning mathematics. One of these ways is using metaphor. This can be considered as a strategy to help students understand mathematics. This paper will present about what metaphor really looks like, how to use it in learning activities; also, the examples of its use and the benefits we can get from using it in learning will be explained. Key Words: Concern, Metaphor, Mathematics Learning.
PENGARUH PEMBELAJARAN BERBASIS MASALAH DENGAN SETTING KOOPERATIF JIGSAW TERHADAP KEMANDIRIAN BELAJAR SISWA SMA Asep Ikin Sugandi
Jurnal Infinity Vol 2, No 2 (2013): Volume 2 Number 2, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (423.237 KB) | DOI: 10.22460/infinity.v2i2.p144-155

Abstract

Kemandirian belajar merupakan aspek yang sangat penting dalam pembelajaran matematika. Hal ini didasarkan bahwa indikator kemandirian belajar seperti 1) Inisiatif Belajar, 2). Mendiagnosa Kebutuhan Belajar, 3) Menetapkan Target dan Tujuan Belajar, 4) Memonitor, Mengatur dan Mengontrol, 5) Memandang Kesulitan Sebagai Tantangan, 6) Memanfaatkan dan Mencari Sumber yang relevan, 7) Memilih dan Menerapkan Strategi Belajar, 8) Mengevaluasi Proses dan Hasil Belajar dan 9) Self Eficacy (konsep diri) sesuai dan mendukung dengan penerapan pendekatan berbasis masalah dengan seting kooperaif Tipe Jigsaw. Kata Kunci : Kemandirian Belajar, Berbasis Masalah, Jigsaw  Independent learning is a very important aspect in learning mathematics. This is based on independent learning indicators such as 1) Learning Initiative, 2). Diagnosing Learning Needs, 3) Setting Targets and Goals Learning, 4) Monitor, Manage and Control, 5) Difficulties Looking For Challenges, 6) Utilize and Finding the relevant sources, 7) Choosing and Implementing Strategy Study, 8) Evaluating the Process and Results learning and 9) self Eficacy (self-concept) compliant and supports the implementation of problem-based approach to setting kooperaif Jigsaw type. Key words : Independence Learning, Problem Based, Jigsaw
PENERAPAN METODE BESARAN PIVOT DALAM PENURUNAN RUMUS TAKSIRAN INTERVAL DARI KOEFISIEN REGRESI LINEAR SEDERHANA Narr Herrhyanto
Jurnal Infinity Vol 1, No 1 (2012): Volume 1 Number 1, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (879.75 KB) | DOI: 10.22460/infinity.v1i1.p104-125

Abstract

Regression is the relationship between the independent variables X and Y response variables were expressed in a mathematical equation. Equations TSB will then constitute a regression equation. The linear regression equation is actually shaped Y = α + βX + ε. From the regression coefficients α and β, then β is the regression coefficient changes affecting the response variable Y.Because the value of β is usually not known, then the value will be estimated based on sample data. In this case, β assessment which will be discussed in this paper is the estimation interval. In other words, how to shape the interval estimate formula of this β. Thus, in this paper will explain how the derivation interval estimates of β. In mathematical statistics there is a method used in the valuation of this interval, ie the amount of pivot method.
PENDEKATAN ICEBERG DALAM PEMBELAJARAN PEMBAGIAN PECAHAN DI SEKOLAH DASAR Saleh Haji
Jurnal Infinity Vol 2, No 1 (2013): Volume 2 Number 1, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (958.806 KB) | DOI: 10.22460/infinity.v2i1.p75-84

Abstract

Makalah ini membahas pengaruh pendekatan iceberg pada pembelajaran pembagian pecahan di Sekolah Dasar.Tahapan pendekatan iceberg tersebut sebagai berikut: 1. Orientasi lingkungan secara matematis, 2. Model material, 3. Pembuatan pondasi, dan 4. Matematika formal. Sedangkan topik pembagian pecahan yang dibahas terdiri atas: pembagian bilangan bulat oleh pecahan, pembagian pecahan oleh bilangan bulat, dan pembagian pecahan dengan pecahan. Penggunakan pendekatan iceberg dalam pembelajaran matematika diharapkan dapat mengatasi kesulitan siswa SD dalam memahami materi pecahan khususnya pembagian pecahan.Kata Kunci    : Pendekatan Iceberg, Pembagian Pecahan  This paper discusses the influence of iceberg approach to learning division of fractions in school Dasar.Tahapan iceberg approach is as follows: 1. Mathematically oriented environment, 2. Material model, 3. Making foundations, and 4. Formal mathematics. While the division of fractions topics covered consist of: integer division by fractions, division of fractions by integers, and division of fractions by fractions. Use of the iceberg in mathematics learning approach is expected to overcome the difficulties in the elementary school students understand the material fractions in particular the division of fractions. Key words : Iceberg approach, division of fractions.
PENERAPAN TEORI PERKEMBANGAN MENTAL PIAGET PADA KONSEP KEKEKALAN PANJANG Idrus Alhaddad
Jurnal Infinity Vol 1, No 1 (2012): Volume 1 Number 1, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (816.742 KB) | DOI: 10.22460/infinity.v1i1.p31-44

Abstract

According to the mental development of Piaget's theory, there are four stages of cognitive development in children, namely: 1) sensory phase motors, from birth until the age of about 2 years; 2) Phase pre operations, from the age of about 2 years to about 7 years; 3) stage of concrete operations, from the age of about 7 years to about 11-12 years; and 4) the stage of formal operations, from the age of about 11 years to mature.Each stage of mental development have a nature or characteristic of each. One of the characteristics that appear in the stage of concrete operations among which at this stage that children are beginning to understand the concept of eternity. Among the concept of eternity long (7-8 years). Of course it is aimed at children abroad where Jean Piaget did research, namely in the State Switzerland.The question is whether the stages of child development applies also to the children in our country. The results of our study showed that, there are children according to age are at the stage of concrete operations is not yet understand the concept of eternity long. 
BELAJAR BERKOMUNIKASI DAN KOMUNIKASI UNTUK BELAJAR DALAM PEMBELAJARAN MATEMATIKA Karman Lanani
Jurnal Infinity Vol 2, No 1 (2013): Volume 2 Number 1, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (423.77 KB) | DOI: 10.22460/infinity.v2i1.p13-25

Abstract

Kegiatan pembelajaran merupakan proses komunikasi untuk menyampaikan pesan dari pendidik kepada peserta didik, bertujuan agar pesan dapat diterima dengan baik dan berpengaruh terhadap pemahaman serta terbentuknya perubahan tingkah laku. Komunikasi edukatif dalam pembelajaran matematika menjadi faktor yang juga berpengaruh terhadap keberhasilan kegiatan pembelajaran matematika. Komunikasi pembelajaran dapat efektif apabila terdapat aliran respon informasi dua arah antara komunikator dan komunikan. Setidaknya terdapat lima aspek yang perlu dipahami dalam membangun komunikasi yang efektif, yaitu: kejelasan, ketepatan,  konteks, sistematika yang jelas, dan budaya komunikator atau komunikan. Mengkomunikasikan matematika, diperlukan kemampuan berkomunikasi yang efektif. Baik guru maupun siswa dalam pembelajaran matematika diharapkan mampu mengomunikasikan pikiran matematisnya secara lisan dan tertulis, secara koheren dan jelas, menggunakan bahasa matematika untuk mengekspresikan gagasannya secara tepat, mengelola pikiran matematisnya melalui komunikasi, menganalisis dan mengevaluasi pikiran matematis siswanya. Hal ini dimaksudkan agar siswa berkemampuan komunikasi secara efektif dalam : (1) menghubungkan benda nyata, gambar, dan diagram ke dalam idea matematika, (2) menjelaskan idea, situasi, dan relasi matematik, secara lisan dan tulisan dengan benda nyata, gambar, grafik dan aljabar, (3) menyatakan peristiwa sehari-hari dalam bahasa atau simbol matematika, (4) mendengarkan, berdiskusi, dan menulis tentang matematika, (5) membaca dengan pemahaman suatu presentasi Matematika tertulis, (6) membuat konjektur, menyusun argumen, merumuskan definisi dan generalisasi, (7) menjelaskan dan membuat pertanyaan matematika yang telah dipelajari. Kata Kunci    : Komunikasi educatif, komunikasi efektif, dan komunikasi dalam pembelajaran matematika. Learning activity is a process of communication to convey a message from educators to students, aims to be well received messages and affect the understanding of the formation and behavior change. Educational communication in mathematics learning becomes a factor that also affects the success of the mathematics learning activities. Communication learning can be effective if there is a two-way flow of information between the response of the communicator and the communicant. There are at least five aspects that need to be understood in establishing effective communication, namely: clarity, accuracy, context, a clear systematic, and cultural communicator or communicant. Communicating mathematics, required ability to communicate effectively. Both teachers and students in learning mathematics are expected to communicate mathematical thinking orally and in writing, coherently and clearly, using the language of mathematics to express ideas precisely, mathematical thinking through communication manage, analyze and evaluate the mathematical thinking of their students. It is intended to make students capable of effective communication in: ( 1 ) connecting real objects, drawings, and diagrams into mathematical ideas, ( 2 ) explain the idea, situation, and mathematical relationships, orally and in writing with real objects, pictures, graphics and algebra, ( 3 ) states a daily occurrence in the language or mathematical symbols, ( 4 ) listen, discuss, and write about mathematics, ( 5 ) read with understanding a written presentation mathematics, ( 6 ) make conjectures, formulate arguments, formulate definition and generalization, ( 7 ) to explain and make math questions that have been studied. Key words            : Communication educatif, effective communication, and communication in learning mathematics
DISPOSISI STATISTIS MAHASISWA DALAM PEMBELAJARAN STATISTIKA DASAR Bambang Avip Priatna Martadiputra
Jurnal Infinity Vol 1, No 2 (2012): Volume 1 Number 2, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (229.354 KB) | DOI: 10.22460/infinity.v1i2.p169-177

Abstract

Tulisan ini berisi hasil penelitian tentang disposisi statistis mahasiswa S1 pendidikan matematika yang mengikuti perkuliahan Statistika Dasar pada sebuah Perguruan Tinggi Negeri di Kota Bandung. Disposisi statistis atau disposisi produktif terhadap statistika sebagai kecenderungan seseorang mahasiswa untuk berpikir dan berbuat dengan cara yang positif dan konstruktif yang berlangsung dalam kegiatan statistis. Hasil penelitian menginformasikan bahwa disposisi statistis mahasiswa pada awal semester, tangah semester, dan pada akhir semester masih belum optimal. Infromasi tersebut mengindikasikan bahwa model atau pendekatan pembelajaran statistika dasar yang digunakan oleh dosen kurang efektif untuk meningkatkan disposisi statistis mahasiswa.  Kata kunci: disposisi statistis  This paper contains the results of research on the disposition  statistical for mathematics education students attending Basic Statistics at the State University in Bandung. The disposition statistical or productive disposition as a tendency of student  to think and act in a positive and constructive in statistical activities. The results inform that the disposition statistical of student in the early of the semester, the hands of the semester, and at the end of the semester is not optimal. The information indicates that the model or approach of learning to basic statistics used of teacher is less effective to enhance of the student's  disposition statistical. Keywords: statistical disposition 
MENINGKATKAN KEMAMPUAN BERPIKIR KREATIF DAN DISPOSISI MATEMATIK SISWA MADRASAH TSANAWIYAH MELALUI PEMBELAJARAN GENERATIF Hamdan Sugilar
Jurnal Infinity Vol 2, No 2 (2013): Volume 2 Number 2, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (748.356 KB) | DOI: 10.22460/infinity.v2i2.p156-168

Abstract

Penelitian ini merupakan penelitian kuasi eksperimen dengan disain kelompok kontrol tidak ekivalen karena tidak adanya pengacakan dalam menentukan subjek penelitian. Peneliti tidak membentuk kelas baru berdasarkan pemilihan sampel secara acak. Subjek sampel diambil dua kelas dari kelas VII siswa MTs Negeri Cikembar Kabupaten Sukabumi, satu kelas sebagai kelas eksperimen dengan pembelajaran generatif dan satu kelas sebagai kelas kontrol dengan pembelajaran konvensional. Instrumen yang digunakan adalah tes dan non tes. Hasil studi penelitian ini adalah: 1) peningkatan kemampuan berpikir kreatif siswa yang mengikuti pembelajaran generatif lebih baik daripada siswa yang mengikuti pembelajaran matematika secara konvensional ditinjau dari pencapaian hasil belajar dan peningkatan kemampuan berpikir kreatif. Kemampuan berpikir kreatif kelas eksperimen termasuk pada kategori sedang sedangkan kelas kontrol termasuk kategori rendah.2) terdapat perbedaan peningkatan kemampuan berpikir kreatif matematik antara siswa kemampuan tinggi, sedang, dan rendah yang mendapat pembelajaran generatif, 3) disposisi matematik siswa yang mengikuti pembelajaran matematika melalui pembelajaran generatif lebih baik daripada siswa yang mengikuti pembelajaran matematika secara konvensional, disposisi matematik siswa pada kelas eksperimen termasuk pada kategori sedang, sedangkan pada kelas kontrol disposisi matematik termasuk pada kategori rendah. 4) terdapat interaksi antara model pembelajaran dan tingkat kemampuan awal siswa dalam menghasilkan kemampuan berpikir kreatif. 5) terdapat asosiasi antara kemampuan berpikir kreatif matematik dengan disposisi matematik, kategori asosiasinya tinggi.Kata Kunci : Pembelajaran Generatif, Berpikir Kreatif, Disposisi Matematik  This research quasi-experiment with design controls not equivalent as there is not a beating in determining the subject research. Researchers does not set up new class based on the election samples randomly. The subject samples taken two classes of class VII students MTs Cikembar Sukabumi, a class as class experiment with learning generative and one class as control classes with conventional teaching. Instruments that used is testing and non-test. Result of the study this research are: 1) increase the capacity and capability creative thinking students attending generative learning better than students who follow in mathematics teaching conventional learning achievement in terms of and increase the capacity and capability creative thinking. Ability to think creative class experiments, including in category is while control classes include category rendah.2 increase the capacity and capability) there are differences between the students think creatively mathematical ability, is low, and who got a lesson generative, 3) Mathematical Disposition students attending mathematics lessons by learning generative better than students who follow in mathematics teaching conventional, this mathematical disposition students in the class experiments, including in category, while in control classes this mathematical disposition including in category is low. 4) There is interaction between models in teaching and skill level early students in producing creative ability to think. 5) There is the association between ability to think creatively mathematical with Disposition, mathematical category association.Key words : Learning Generative, Creative Thinking, Mathematical Disposition
PENGEMBANGAN BAHAN AJAR MELALUI PENELITIAN DESAIN Tatang Mulyana
Jurnal Infinity Vol 1, No 2 (2012): Volume 1 Number 2, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (486.847 KB) | DOI: 10.22460/infinity.v1i2.p126-137

Abstract

Saat ini, guru-guru matematik dan pihak-pihak terkait telah mencoba membuat bahan ajaryang sesuai dengan tuntutan Kurikulum Matematika 2006 atau KTSP, namun hasilnyakurang memuaskan. Hal ini akibat dari pembuatan bahan ajar hanya berdasarkan padaperkiraan atau asumsi-asumi dari pembuat bahan ajar, yaitu diasumsikan siswa akan belajarmelalui lintasan belajar tertentu. Salah satu solusi untuk menyelesaikan masalah tersebutadalah dengan cara mengembangkan Hypothetical Learning Trajectory melalui PenelitianDesain. Kata Kunci : Bahan Ajar, Penelitian Desain, Hypothetical Learning Trajectory.  Mathematic teachers and other related agents have all these years been trying to formulateteaching materials that are appropriate with the demands of 2006 mathematic curriculum orKTSP (school-based curriculum). Yet, the results have not been as what are expected. This isdue to the fact that the formulation of teaching materials are only based on estimations andassumptions stating that students will only learn on certain learning tracks. One of solutionsto solve the problem is developing Hypothetical Learning Trajectory by using DesignResearch. Key Words: Teaching Materials, Design Research, Hypothetical Learning Trajectory.
PEMBELAJARAN KONTEKSTUAL UNTUK MENINGKATKAN KEMAMPUAN REPRESENTASI MATEMATIS SISWA SEKOLAH MENENGAH PERTAMA Kartini Hutagaol
Jurnal Infinity Vol 2, No 1 (2013): Volume 2 Number 1, Infinity
Publisher : IKIP Siliwangi and I-MES

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (493.794 KB) | DOI: 10.22460/infinity.v2i1.p85-99

Abstract

Masalah dalam penelitian ini adalah lemahnya kemampuan representasi matematis siswa. Penelitian ini berbentuk eksperimen, kelompok eksperimen diberi perlakuan pembelajaran kontekstual, dan kelompok kontrol diberi perlakuan pembelajaran konvensional. Pengumpulan data dilakukan dengan menggunakan instrumen tes hasil belajar kemampuan representasi matematis siswa. Instrumen tersebut telah memenuhi syarat validitas isi, sehingga telah memiliki ketepatan untuk digunakan sebagai instrumen penelitian, serta memiliki koefisien reliabilitas 0,76 dan diinterpretasikan bahwa derajat reliabilitas instrumenyang digunakan adalah kategori tinggi dengan demikian dapat dipercaya sebagai alat ukur penelitian. Temuan dalam penelitian ini adalah pembelajaran kontekstual dapatmeningkatkan kemampuan representasi matematis siswa sekolah menengah pertama. Hasil belajar siswa yang mendapat pembelajaran dengan menggunakan pembelajaran kontekstual, kemampuan representasinya lebih baik daripada hasil belajar siswa yang menggunakan pembelajaran konvensioanal. Temuan lainnya: siswa yang belajar dengan pembelajaran kontekstual kemampuan mengkaji, menduga, hingga membuat kesimpulan berkembang dengan baik, dibanding siswa yang menggunakan pembelajaran biasa. Kata Kunci : Kemampuan Representasi Matematis, Pembelajaran Kontekstual.  The problem in this study is the lack of representation of students' mathematical ability. This form of experimental research, the experimental group was treated contextual learning, and a control group treated with conventional learning. The data was collected using the results of the test instruments capability representation of students' mathematical learning. The instrument has content validity qualify, so it already has the accuracy to be used as aresearch tool, and has a reliability coefficient of 0.76 and interpreted that the degree of reliability of the instrument used is a high category can thus be trusted as a measure ofresearch. The findings in this study are contextual learning can improve students' mathematical representation of junior high school. Learning outcomes of students who received learning using contextual learning, the ability of representation is better than the results of student learning using learning konvensioanal. Other findings : students arelearning with the ability to assess contextual learning, suspect, to make inferences is well developed, compared to students who use ordinary learning. Key words : Mathematical representation capability, Contextual Learning

Page 3 of 34 | Total Record : 339


Filter by Year

2012 2025


Filter By Issues
All Issue Vol 14 No 3 (2025): VOLUME 14, NUMBER 3, INFINITY Vol 14 No 2 (2025): VOLUME 14, NUMBER 2, INFINITY Vol 14 No 1 (2025): VOLUME 14, NUMBER 1, INFINITY Vol 13 No 2 (2024): VOLUME 13, NUMBER 2, INFINITY Vol 13 No 1 (2024): VOLUME 13, NUMBER 1, INFINITY Vol 12 No 2 (2023): VOLUME 12, NUMBER 2, INFINITY Vol 12 No 1 (2023): VOLUME 12, NUMBER 1, INFINITY Vol 11 No 2 (2022): VOLUME 11, NUMBER 2, INFINITY Vol 11, No 1 (2022): VOLUME 11, NUMBER 1, INFINITY Vol 10, No 2 (2021): VOLUME 10, NUMBER 2, INFINITY Vol 10, No 1 (2021): VOLUME 10, NUMBER 1, INFINITY Vol 9, No 2 (2020): VOLUME 9, NUMBER 2, INFINITY Vol 9, No 1 (2020): Volume 9, Number 1, Infinity Vol 8, No 2 (2019): Volume 8 Number 2, Infinity Vol 8, No 1 (2019): Volume 8 Number 1, Infinity Vol 7, No 2 (2018): Volume 7 Number 2, INFINITY Vol 7, No 1 (2018): Volume 7 Number 1, INFINITY Vol 6, No 2 (2017): VOLUME 6 NUMBER 2, INFINITY Vol 6, No 1 (2017): Volume 6 Number 1, INFINITY Vol 5, No 2 (2016): Volume 5 Number 2, Infinity Vol 5, No 1 (2016): Volume 5 Number 1, Infinity Vol 4, No 2 (2015): Jurnal Infinity Vol 4 No 2, September 2015 Vol 4, No 2 (2015): Volume 4 Number 2, Infinity Vol 4, No 1 (2015): Volume 4 Number 1, Infinity Vol 3, No 2 (2014): Volume 3 Number 2, Infinity Vol 3, No 1 (2014): Volume 3 Number 1, Infinity Vol 2, No 2 (2013): Volume 2 Number 2, Infinity Vol 2, No 1 (2013): Volume 2 Number 1, Infinity Vol 1, No 2 (2012): Volume 1 Number 2, Infinity Vol 1, No 1 (2012): Volume 1 Number 1, Infinity More Issue