cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
juti.if@its.ac.id
Editorial Address
Gedung Teknik Informatika Lantai 2 Ruang IF-230, Jalan Teknik Kimia, Kampus ITS Sukolilo, Surabaya, 60111
Location
Kota surabaya,
Jawa timur
INDONESIA
JUTI: Jurnal Ilmiah Teknologi Informasi
ISSN : 24068535     EISSN : 14126389     DOI : http://dx.doi.org/10.12962/j24068535
JUTI (Jurnal Ilmiah Teknologi Informasi) is a scientific journal managed by Department of Informatics, ITS.
Arjuna Subject : -
Articles 9 Documents
Search results for , issue "Vol 16, No. 2, Juli 2018" : 9 Documents clear
Soft Weighted Median Filter Method for Improved Image Segmentation with Noise Manek, Siprianus Septian; Tjandrasa, Handayani
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a721

Abstract

Soft Weighted Median Filter Method (SWMF) is one of the new methods for noise filtering in image processing. This method is used for two types of noise in images, there is fixed valued noise (FVN) and random valued noise (RVN). Fixed valued noise is a noise type with an unchanged value, it changes the pixel value of the image to the maximum and minimum values (0 and 255), while random valued noise is a noise type with a changed value. An example of fixed valued noise is salt & pepper noise, while for random valued noise can be exemplified as gaussian, poisson, speckle, and localvar noise.Based on previous research, SWMF method can be applied to all images with all kinds of noise (FVN and RVN) and able to reduce the noise well. This method has a higher PSNR value than other methods, especially for random valued noise types such as: gaussian, speckle, and localvar noise.In this study, we propose to examine the performance of the SWMF method further by comparing this method with other methods such as Median Filter, Mean Filter, Gaussian Filter, and Wiener Filter in an image segmentation process. The image segmentation process in this research is based on area detection using Top-Hat transform and Otsu thresholding and line detection using Sobel edge detection. The performance measurement process uses the calculation of sensitivity value, specificity, and accuracy on the image segmentation with the groundtruh image.The results show that Soft Weighted Median Filter method can improve the quality of image segmentation with the average accuracy of 95.70% by reducing fixed value noise and random valued noise in the images.
Segmentasi Citra Sel Tunggal Smear Serviks Menggunakan Metode Radiating Normally Biased Generalized Gradient Vector Flow Snake Susanti, Martini Dwi Endah; Tjandrasa, Handayani; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a762

Abstract

Sebuah sistem penyaringan otomatis dan sistem diagnosa yang akurat sangat berguna untuk proses analisis hasil pemeriksaan pap smear. Langkah yang paling utama dari sistem tersebut adalah proses segmentasi sel nukleus dan sitoplasma pada citra hasil pemeriksaan pap smear, karena dapat memengaruhi keakuratan sistem. Normally Biased Generalized Gradient Vector Flow Snake (NBGGVFS) merupakan sebuah algoritma gaya eksternal untuk active contour (snake) yang menggabungkan metode Generalized Gradient Vector Flow Snake (GGVFS) dan Normally Biased Gradient Vector Flow Snake (NBGVFS). Dalam memodelkan snake, terdapat fungsi edge map. Edge map biasanya dihitung dengan menggunakan operator deteksi tepi seperti sobel. Namun, metode ini tidak dapat mendeteksi daerah nukleus dari citra smear serviks dengan benar. Penelitian ini bertujuan untuk segmentasi citra sel tunggal smear serviks dengan memanfaatkan penggunaan Radiating Edge Map untuk menghitung edge map dari citra dengan metode NBGGVFS. Metode yang diusulkan terdiri atas tiga tahapan utama, yaitu tahap praproses, segmentasi awal dan segmentasi kontur. Uji coba dilakukan dengan menggunakan data set Herlev. Pengujian dilakukan dengan membandingkan hasil segmentasi metode yang diusulkan dengan metode pada penelitian sebelumnya dalam melakukan segmentasi citra sel tunggal smear serviks. Hasil pengujian menunjukkan bahwa metode yang diusulkan mampu mendeteksi area nukleus lebih optimal metode penelitian sebelumnya. Nilai rata-rata akurasi dan Zijdenbos Similarity Index (ZSI) untuk segmentasi nukleus adalah 96,96% dan 90,68%. Kemudian, nilai rata-rata akurasi dan ZSI untuk segmentasi sitoplasma adalah 86,78% and 89,35%. Dari hasil evaluasi tersebut, disimpulkan metode yang diusulkan dapat digunakan sebagai proses segmentasi citra smear serviks pada identifikasi kanker serviks secara otomatis.
SELEKSI PENELUSURAN MINAT DAN KEMAMPUAN (PMDK) DENGAN FUZZY TOPSIS Hakim, Husnul; Budiman, Alexius Reinaldo
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a732

Abstract

Penelusuran Minat dan Kemampuan (PMDK) merupakan salah satu jalur penerimaan mahasiswa baru di perguruan tinggi. Berbeda dengan jalur lain yang menggunakan tes tertulis, jalur PMDK merupakan jalur penerimaan mahasiswa baru tanpa melalui tes. Mahasiswa baru akan diseleksi dengan memperhatikan nilai rapor calon mahasiswa selama duduk di bangku SMA. Pada penelitian ini, akan dikembangkan metode seleksi mahasiswa baru melalui jalur PMDK. Calon mahasiswa tidak hanya diseleksi berdasarkan nilai rapor, tetapi juga berdasarkan kualitas sekolah dan histori nilai mahasiswa yang berasal dari sekolah asal pendaftar PMDK. Ketiga parameter ini dapat saling bertentangan. Sebagai contoh, sekolah dengan kualitas yang baik dapat saja memiliki standar yang tinggi sehingga nilai rapor siswanya lebih rendah dari nilai rapor siswa yang berasal dari sekolah lain yang kualitasnya lebih rendah. Untuk itu, perlu digunakan metode pengambilan keputusan yang melibatkan banyak kriteria. Permasalahan pengambilan keputusan seperti ini dikenal dengan multicriteria decision making (MCDM).Salah satu cara untuk pengambilan keputusan MCDM adalah dengan menggunakan Fuzzy TOPSIS. Pada penelitian ini, ketiga parameter yang menentukan diterima atau tidaknya calon mahasiswa akan diproses dengan menggunakan FUZZY TOPSIS. Hasil penelitian menunjukkan bahwa closeness coefficient yang dihasilkan melalui Fuzzy TOPSIS berkolerasi dengan nilai IPK mahasiswa yang diterima melalui jalur PMDK. Kata kunci: Fuzzy TOPSIS, MCDM, PMDK
SISTEM EVALUASI DAN KLASIFIKASI KINERJA AKADEMIK MAHASISWA UNIVERSITAS MADURA MENGGUNAKAN NAIVE BAYES DENGAN DIRICHLET SMOOTHING Prasetyowati, Erwin; Ramadhani, Nilam
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a688

Abstract

Pengawasan terhadap kinerja akademik mahasiswa sebagai bentuk peningkatan mutu harus dilakukan secara tersistem dan terintegrasi. Namun pengawasan tersebut akan lebih efektif jika dilakukan secara periodik, yaitu pada tahun kedua dan keeempat dengan maksud pihak akademik dapat mengetahui perkembangan pencapaian belajar masing-masing mahasiswa dengan cepat, sehingga peringatan atau tindakan yang akan diberikan pada mahasiswa dan evaluasi terhadap seluruh aktivitas akademis dapat segera dilakukan. Penelitian ini bertujuan mengklasifikasikan kinerja mahasiswa melalui IPK dan jumlah SKS yang belum diselesaikan selama masa studinya. Klasifikasi dilakukan pada tahun kedua dan tahun keempat masa studi. Pada tahun kedua, klasifikasi dibagi menjadi tiga status yaitu Normal, Bermasalah dan Peringatan dengan ditentukan melalui standar nilai yang ditentukan. Pada tahun keempat klasifikasi dibagi menjadi dua kelompok, yaitu kelompok Lulus dan Drop Out. Proses klasifikasi yang dilakukan pada tahun keempat, menggunakan algoritma Naïve Bayes yang terbukti memiliki tingkat keakurasian yang tinggi dengan metode maximum likehood atau berdasarkan kemiripan tertinggi dari data yang diolah. Pada proses penghitungan Naïve Bayes terdapat sedikit keraguan apabila ada peluang yang bernilai 0. Oleh karena itu untuk memaksimalkan performa dari Naïve Bayes dalam klasifikasi ini, maka digunakan Dirichlet Smoothing. Berdasarkan hasil pengujian terhadap 200 data uji maka didapatkan nilai akurasi mencapai 91.50%, nilai precision sebesar 88.78% dan nilai recall adalah 95%. Dengan demikian dapat diketahui bahwa data memiliki nilai yang konsisten.
RANCANG BANGUN APLIKASI PENYEWAAN LAPANGAN FUTSAL BERBASIS ANDROID Ratnasari, Dwi; Hadi, Hayatulloh Firman; Budiarto, Jian
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a738

Abstract

Futsal lease nowadays is mostly managed manually. The consumers have to come to the site to check the available schedule and to lease it. It is not effective since it spent times. As the technology advances, an android-based application for futsal lease is alternative solution.  The design and development of android-based application for futsal lease use waterfall method which started with design, analysis, development, tryout and implementation. The application provides real time information about futsal court, a search feature to available futsal schedules, futsal leases, and the down payment directly in the application. Based on the results of tryout through questionnaire filled by futsal owners (3 subjects) and consumers (17 subjects), 69,7% of the respondents very agree on the use of the application. Thus, the research concludes that android-based application for futsal lease has satisfied the need of futsal owners and consumers.
PERHITUNGAN DAN PEMISAHAN SEL DARAH PUTIH BERDASARKAN CENTROID DENGAN MENGGUNAKAN METODE MULTI PASS VOTING DAN K-MEANS PADA CITRA SEL ACUTE LEUKEMIA Arisa, Nursanti Novi; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a661

Abstract

Leukemia is one of the dangerous diseases that can cause death. One of the types of leukemia is acute leukemia that includes ALL (Acute Lymphoblastic Leukemia) and AML (Acute Myeloid Leukemia). The fastest identification against this disease can be done by computing and analysing white blood cell types. However, the manual counting and identification of the white blood cell types are still limited by time. Therefore, automatic counting process is necessary to be conducted in order to get the results more quickly and accurately. Previous studies showed that automatic counting process in the image of Acute Leukemia cells faced some obstacles, the existence of touching cell and the implementation of  geometry feature that cannot produce an accurate counting. It is because the shapes of the cell are various. This study proposed a method for the counting of white blood cells and the separation of touching cells on Acute Leukemia cells image by using Multi Pass Voting method (MPV) based on seed detection (centroid) and K-Means method. Initial segmentation used for separating foreground and background area is canny edge detection. The next stage is seed detection (centroid) using Multi Pass Voting method. The counting of white blood cells is based on the results of the centroid produced. The existence of the touching cells are  separated using K-Means method, the determination of the initial centroid  is based on the results of the Multi Pass Voting method. Based on the evaluation results of 40 images of Acute Leukemia dataset, the proposed method is capable to properly compute based on the centroid. It is also able to separate the touching cell into a single cell. The accuracy of the white blood cell counting result is about 98,6%.
Median Filter For Transition Region Refinement In Image Segmentation Rosyadi, Ahmad Wahyu; Suciati, Nanik
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a750

Abstract

Transition region based image segmentation is one of the simple and effective image segmentation methods. This method is capable to segment image contains single or multiple objects. However, this method depends on the background. It may produce a bad segmentation result if the gray level variance is high or the background is textured. So a method to repair the transition region is needed. In this study, a new method to repair the transition region with median filter based on the percentage of the adjacent transitional pixels is proposed. Transition region is extracted from the grayscale image. Transition region refinement is conducted based on the percentage of the adjacent transitional pixels. Then, several morphological operations and the edge linking process are conducted to the transition region. Afterward, region filling is used to get the foreground area. Finally, image of segmentation result is obtained by showing the pixels of grayscale image that are located in the foreground area. The value of misclassification error (ME), false negative rate (FNR), and false positive rate (FPR) of the segmentation result are calculated to measure the proposed method performance. Performance of the proposed method is compared with the other method. The experimental results show that the proposed method has average value of ME, FPR, and FNR: 0.0297, 0.0209, and 0.0828 respectively. It defines that the proposed method has better performance than the other methods. Furthermore, the proposed method works well on the image with a variety of background, especially on image with textured background.
KLASIFIKASI IKAN MENGGUNAKAN ORIENTED FAST AND ROTATED BRIEF (ORB) DAN K-NEAREST NEIGHBOR (KNN) Ramadhani, Mirza; Murti, Darlis Heru
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a711

Abstract

Ikan memiliki bentuk dan ukuran tertentu yang berbeda antara ikan yang satu dengan yang lain. Permasalahan dalam mengenali jenis ikan lebih kompleks dibandingkan dengan mengenali wajah manusia. Perbedaan bentuk, warna, dan tekstur pada ikan lebih bervariasi dibandingkan manusia. Pengenalan jenis ikan pada umumnya masih dilakukan secara manual menggunakan pengamatan mata. Sehingga diperlukan adanya sistem yang dapat mengenali ikan secara otomatis. Penelitian sebelumnya juga sudah dapat mengenali jenis ikan namun sensitive terhadap berbagai transformasi atau deformasi dari sebuah objek, dan waktu komputasi yang tidak sedikit, sehingga kurang efektif untuk mengenali objek ikan. Dalam Penelitian ini, kami mengusulkan metode untuk mendeteksi dan mengenali jenis objek ikan menggunakan metode ORB dan KNN. Pengaplikasian dari metode ORB diterapkan untuk ekstraksi fitur dari gambar yang diambil. Kemudian hasil tersebut akan diklasifikasi menggunakan KNN untuk menentukan label kelas yang tepat dari input data ikan. Hasil uji coba menunjukkan bahwa metode yang diusulkan pada penelitian ini mencapai akurasi klasifikasi sebesar 97,5%.
DATA REFINEMENT APPROACH FOR ANSWERING WHY-NOT PROBLEM OVER K-MOST PROMISING PRODUCT (K-MPP) QUERIES Permadi, Vynska Amalia; Ahmad, Tohari; Santoso, Bagus Jati
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 16, No. 2, Juli 2018
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v16i2.a754

Abstract

K-Most Promising (K-MPP) product is a strategy for selecting a product that used in the process of determining the most demanded products by consumers. The basic computations used to perform K-MPP are two types of skyline queries: dynamic skyline and reverse skyline. K-MPP selection is done on the application layer, which is the last layer of the OSI model. One of the application layer functions is providing services according to the user's preferences.In the K-MPP implementation, there exists the situation in which the manufacturer may be less satisfied with the query results generated by the database search process (why-not question), so they want to know why the database gives query results that do not match their expectations. For example, manufacturers want to know why a particular data point (unexpected data) appears in the query result set, and why the expected product does not appear as a query result. The next problem is that traditional database systems will not be able to provide data analysis and solution to answer why-not questions preferred by users.To improve the usability of the database system, this study is aiming to answer why-not K-MPP and providing data refinement solutions by considering user feedback, so users can also find out why the result set does not meet their expectations. Moreover, it may help users to understand the result by performing analysis information and data refinement suggestion.

Page 1 of 1 | Total Record : 9