cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
juti.if@its.ac.id
Editorial Address
Gedung Teknik Informatika Lantai 2 Ruang IF-230, Jalan Teknik Kimia, Kampus ITS Sukolilo, Surabaya, 60111
Location
Kota surabaya,
Jawa timur
INDONESIA
JUTI: Jurnal Ilmiah Teknologi Informasi
ISSN : 24068535     EISSN : 14126389     DOI : http://dx.doi.org/10.12962/j24068535
JUTI (Jurnal Ilmiah Teknologi Informasi) is a scientific journal managed by Department of Informatics, ITS.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 7, No 1, Januari 2008" : 5 Documents clear
ALGORITMA SHARED NEAREST NEIGHBOR BERBASIS DATA SHRINKING Rifki Fahrial Zainal; Arif Djunaidy
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 7, No 1, Januari 2008
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (178.689 KB) | DOI: 10.12962/j24068535.v7i1.a56

Abstract

Shared Nearest Neighbor (SNN) algorithm constructs a neighbor graph that uses similarity between data points based on amount of nearest neighbor which shared together. Cluster obtained from representative points that are selected from the neighbor graph. The representative point is used to reduce number of clusterization errors, but also reduces accuracy. Data based shrinking SNN algorithm (SSNN) uses the concept of data movement from data shrinking algorithm to increase accuracy of obtained data shrinking. The concept of data movement will strengthen the density of neighbor graph so that the cluster formation process could be done from neighbor graph components which still has a neighbor relationship. Test result shows SSNN algorithm accuracy is 2% until 8% higher than SNN algorithm, because of the termination of relationship between weak data points in the neighbor graph is done slowly in several iteration. However, the computation time required by SSNN algorithm is three times longer than SNN algoritm computational time, because SSNN algorithm constructs neighbor graph in several iteration.
A STUDY ON RANKING METHOD IN RETRIEVING WEB PAGES BASED ON CONTENT AND LINK ANALYSIS: COMBINATION OF FOURIER DOMAIN SCORING AND PAGERANK SCORING Diana Purwitasari
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 7, No 1, Januari 2008
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2047.368 KB) | DOI: 10.12962/j24068535.v7i1.a57

Abstract

Ranking module is an important component of search process which sorts through relevant pages. Since collection of Web pages has additional information inherent in the hyperlink structure of the Web, it can be represented as link score and then combined with the usual information retrieval techniques of content score. In this paper we report our studies about ranking score of Web pages combined from link analysis, PageRank Scoring, and content analysis, Fourier Domain Scoring. Our experiments use collection of Web pages relate to Statistic subject from Wikipedia with objectives to check correctness and performance evaluation of combination ranking method. Evaluation of PageRank Scoring show that the highest score does not always relate to Statistic. Since the links within Wikipedia articles exists so that users are always one click away from more information on any point that has a link attached, it it possible that unrelated topics to Statistic are most likely frequently mentioned in the collection. While the combination method show link score which is given proportional weight to content score of Web pages does effect the retrieval results.
STUDI ANALISIS EIGENFACE DAN EIGEN FUZZY SET UNTUK EKSTRAKSI CIRI BIBIR PADA SISTEM IDENTIFIKASI WAJAH M. Rahmat Widyanto; Shinta Puspasari
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 7, No 1, Januari 2008
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2047.286 KB) | DOI: 10.12962/j24068535.v7i1.a58

Abstract

This paper compares the performance of eigenface and eigen fuzzy set to extract lip traits. Testing is conducted by implementing the two methods in a face identification system based on lip traits. The database used is primary data that consists of front-face image and lip image. The test result shows that eigenface is more effective with average precisionrecall value 0.22% higher. However, statistical tests show that there are no significant differences between the two methods. An optimal extraction method will be used to develop face identification system based on facial components.
PENJADWALAN MATAKULIAH DENGAN MENGGUNAKAN ALGORITMA GENETIKA DAN METODE CONSTRAINT SATISFACTION Joko Lianto Buliali; Darlis Herumurti; Giri Wiriapradja
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 7, No 1, Januari 2008
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2047.249 KB) | DOI: 10.12962/j24068535.v7i1.a59

Abstract

Course scheduling problem has gained attention from many researchers. A number of methods have been produced to get optimum schedule. Classical definition of course scheduling cannot fulfill the special needs of lecture scheduling in universities, therefore several additional rules have to be added to this problem. Lecture scheduling is computationally NP-hard problem, therefore a number of researches apply heuristic methods to do automation to this problem. This research applied Genetic Algorithm combined with Constraint Satisfaction Problem, with chromosomes generated by Genetic Algorithm processed by Constraint Satisfaction Problem. By using this combination, constraints in lecture scheduling that must be fulfilled can be guaranteed not violated. This will make heuristic process in Genetic Algorithm focused and make the entire process more efficient. The case study is the case in Informatics Department, Faculty of Information Technology, ITS. From the analysis of testing results, it is concluded that the system can handle specific requested time slot for a lecture, that the system can process all the offered lectures, and that the system can produce schedules without violating the given constraints. It is also seen that Genetic Algorithm in the system has done optimation in finding the minimum student waiting time between lectures.
PENERAPAN ALGORITMA WEIGHTED TREE SIMILARITY UNTUK PENCARIAN SEMANTIK Riyanarto Sarno; Faisal Rahutomo
JUTI: Jurnal Ilmiah Teknologi Informasi Vol 7, No 1, Januari 2008
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (612.589 KB) | DOI: 10.12962/j24068535.v7i1.a60

Abstract

Full-text search and metadata-enabled search have weakness in the precision of the searched article. This research offers weighted tree similarity algorithm combined with cosine similarity method to count similarity in semantic search. In this method metadata is constructed based on the tree of labelled node, labelled and weighted branch. The structure of tree metadata is constructed based on semantic information like taxonomi, ontologi, preference, synonim, homonym and stemming. From testing result, the precision of search using weighted tree similarity algorithm is better that full-text search and metadata-enabled search.

Page 1 of 1 | Total Record : 5