cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
juti.if@its.ac.id
Editorial Address
Gedung Teknik Informatika Lantai 2 Ruang IF-230, Jalan Teknik Kimia, Kampus ITS Sukolilo, Surabaya, 60111
Location
Kota surabaya,
Jawa timur
INDONESIA
JUTI: Jurnal Ilmiah Teknologi Informasi
ISSN : 24068535     EISSN : 14126389     DOI : http://dx.doi.org/10.12962/j24068535
JUTI (Jurnal Ilmiah Teknologi Informasi) is a scientific journal managed by Department of Informatics, ITS.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol. 17, No. 2, Juli 2019" : 6 Documents clear
KLASIFIKASI KEBUTUHAN NON-FUNGSIONAL MENGGUNAKAN FSKNN BERBASIS ISO/IEC 25010 Hakim, Lukman; Rochimah, Siti; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 17, No. 2, Juli 2019
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v17i2.a823

Abstract

Aspek kualitas kebutuhan non-fungsional merupakan salah satu faktor penting yang berperan dalam kesuksesan pengembangan perangkat lunak. Namun, mengidentifikasi aspek kualitas kebutuhan non-fungsional merupakan hal yang sulit untuk dilakukan. Karena aspek kualitas kebutuhan non-fungsional sering ditemukan tercampur dengan kebutuhan fungsional.  Oleh karena itu dibutuhkan suatu cara untuk dapat mengidentifikasi aspek kualitas kebutuhan non-fungsional. Penelitian yang ada mampu mengidentifikasi aspek kebutuhan non-fungsional dengan melakukan klasifikasi. Akan tetapi, standar kualitas yang digunakan sebagai rujukan untuk melabeli kalimat kebutuhan masih menggunakan standar ISO/IEC 9126. ISO/IEC 9126 merupakan standar lama yang dirilis pada tahun 2001. Peneliti sebelumnya mengungkapkan ambiguitas dalam enam sub-atribut pada struktur hirarkis ISO/IEC 9126. Oleh karena itu, standar kualitas yang digunakan untuk melabeli kalimat kebutuhan pada penelitian ini adalah ISO/IEC 25010. Sedangkan metode klasifikasi yang digunakan adalah FSKNN. Metode klasifikasi yang digunakan diuji dengan menggunakan nilai tetangga terdekat 10, 20 dan 30.  Pada penelitian ini metode FSKNN berhasil memeroleh nilai tertinggi berdasarkan ground truth pakar yaitu precision sebesar 22.55 dan recall 27.64.
PENERAPAN LOGIKA FUZZY SUGENO UNTUK PENENTUAN REWARD PADA GAME EDUKASI AKU BISA Oktavia, Chaulina Alfianti; Maulidi, Rakhmad
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 17, No. 2, Juli 2019
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v17i2.a825

Abstract

This study discusses an application of fuzzy logic in educational game. This game requires a fast player response. We made this game in order to raise children awareness to encounter strangers. In this game, strangers are enemies in the form of hand drawings. The main characters in this game are boy and girl. The player can choose a character as desired. Each selected character has a different level. At each level, there is a level of difficulty based on the ease of passing enemies to reach the goal. The player would win the game once he/she manages to escape from strangers and arrives at home. Each level of the game has an enemy who tries to approach the player. If the enemy caught by the player, it will get consequences according to the fuzzy rules that applied to the game. The application of fuzzy logic in this game is to regulate the form of reward that will receive by the player. The basis for determining reward is the living conditions, time, and scores obtained by the player. In this research, we use fuzzy Sugeno logic for giving rewards. We conclude that fuzzy logic applies to our educational game.
Perbaikan Segmentasi Pembuluh Darah Tipis Pada Citra Retina Menggunakan Fuzzy Entropy Farosanti, Lafnidita; Fatichah, Chastine
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 17, No. 2, Juli 2019
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v17i2.a857

Abstract

Diabetic Retinopathi adalah kelainan pembuluh darah retina pada mata yang diakibatkan komplikasi penyakit diabetes. Deteksi lebih dini diperlukan agar kelainan ini dapat ditangani secara cepat dan tepat. Kelainan ini ditandai dengan melemahnya bagian pembuluh darah tipis akibat tersumbatnya aliran darah kemudian menyebabkan bengkak pada mata bahkan kebutaan. Oleh karena itu diperlukan metode analisa pembuluh darah retina melalui proses segmentasi pembuluh darah terutama pada bagian penting yaitu pembuluh darah tipis. Peneliti mengusulkan penggabungan metode perbaikan pembuluh darah tipis atau yang dikenal dengan Thin Vessel Enhancement dan Fuzzy Entropy. Thin Vessel Enhancement berfungsi untuk memperbaiki  citra agar dapat mengekstrak lebih banyak bagian pembuluh darah khususnya pembluh darah tipis,  sedangkan Fuzzy Entropy dapat menentukan nilai optimal threshold berdasarkan nilai entropy pada membership function. Segmentasi yang dihasilkan dibagi menjadi 3 kategori yaitu pembuluh darah utama, medium, dan tipis. Uji coba dilakukan terhadap metode Thin Vessel Enhancement menggunakan 1 kernel dan Fuzzy Entropy dari nilai threshold ke-1 maka diperoleh nilai accuracy, sensitivity, dan specivicity sebesar 94.81%, 66.83%, dan 97.51%.
KLASTERISASI DOKUMEN MENGGUNAKAN WEIGHTED K-MEANS BERDASARKAN RELEVANSI TOPIK Riduwan, Muhammad; Fatichah, Chastine; Yuniarti, Anny
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 17, No. 2, Juli 2019
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v17i2.a892

Abstract

Jumlah penelitian di dunia mengalami perkembangan yang pesat, setiap tahun berbagai peneliti dari penjuru dunia menghasilkan karya ilmiah seperti makalah, jurnal, buku dsb. Metode klasterisasi dapat digunakan untuk mengelompokkan dokumen karya ilmiah ke dalam suatu kelompok tertentu berdasarkan relevansi antar topik. Klasterisasi pada dokumen memiliki karakteristik yang berbeda karena tingkat kemiripan antar dokumen dipengaruhi oleh kata-kata pembentuknya. Beberapa metode klasterisasi kurang memperhatikan nilai semantik dari kata. Sehingga klaster yang terbentuk kurang merepresentasikan isi topik dokumen. Klasterisasi dokumen teks masih memiliki kemungkinan adanya outlier karena pemilihan fitur teks yang tidak optimal. Oleh karena itu dibutuhkan pemrosesan data yang tepat serta metode yang mengoptimalkan hasil klaster. Penelitian ini mengusulkan metode klasterisasi dokumen menggunakan Weighted K-Means yang dipadukan dengan Maximum Common Subgraph. Weighted k-means digunakan untuk klasterisasi awal dokumen berdasarkan kata-kata yang diekstraksi. Pembentukan Weighted K-Means berdasarkan perhitungan Word2Vec dan TextRank dari kata-kata dalam dokumen. Maximum common subgraph merupakan tahap pembentukan graf yang digunakan dalam penggabungan klaster untuk menghasilkan klaster baru yang lebih optimal. pembentukan graf dilakukan dengan perhitungan nilai Word2vec dan Co-occurrence dari klaster. Representasi topik dokumen tiap klaster dapat dihasilkan dari pemodelan topik Latent Dirichlet Allocation (LDA). Pengujian dilakukan dengan menggunakan dataset artikel ilmiah dari Scopus. Hasil dari analisis Koherensi topik menunjukkan nilai koherensi usulan metode adalah 0.532 pada dataset 1 yang bersifat homogen dan 0.472 pada dataset 2 yang bersifat heterogen.
RANCANG BANGUN SISTEM REKOMENDASI RESEP MASAKAN BERDASARKAN BAHAN BAKU DENGAN MENGGUNAKAN ALGORITMA PENYARINGAN BERBASIS KONTEN Mulyawan, Yandhy Raka; Lestari, Caecilia Citra
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 17, No. 2, Juli 2019
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v17i2.a791

Abstract

Banyak ibu rumah tangga yang kebingungan untuk menentukan masakan apa yang akan mereka masak sehingga bahan makanan yang mereka miliki menjadi rusak akibat tidak kunjung dimasak. Sebagian besar ibu rumah tangga mendapatkan ide resep dari website resep karena mudah untuk diakses dan memiliki resep yang cukup lengkap, namun kelemahannya kebanyakan dari website resep tidak memiliki fitur untuk pencarian resep berdasarkan bahan-bahan yang dimiliki. Aplikasi telepon genggam dipilih untuk memecahkan masalah tersebut. Pada penelitian ini penulis akan membuat rancang bangun sistem rekomendasi resep masakan berdasarkan bahan baku dengan menggunakan algoritma penyaringan berbasis konten (CBFA). Algoritma ini merekomendasikan resep yang memiliki kesamaan dengan bahan makanan yang dimasukkan oleh pengguna. Aplikasi dibuat menggunakan file PHP untuk memproses data resep, seperti query data, mengecek data yang sama, menentukan weight serta menghitung dan mengurutkan resep menurut CBFA. Hasil dari pengujian menunjukkan bahwa rekomendasi resep sudah sesuai dengan kekuatan 71%.
CLUSTERING TOPIK PENELITIAN BERBASIS UNSUPERVISED LEARNING UNTUK REKOMENDASI KOLEKSI PUSTAKA DI PERPUSTAKAAN ITS Navastara, Dini Adni; Mursidah, Eva; Gonti, Yeni Anita; Wahyuni, Davi; Wiyadi, Petrus Damianus Sammy; Suadi, Wahyu
JUTI: Jurnal Ilmiah Teknologi Informasi Vol. 17, No. 2, Juli 2019
Publisher : Department of Informatics, Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j24068535.v17i2.a788

Abstract

Perpustakaan ITS adalah salah satu penyedia jasa informasi di ITS.  Berbagai koleksi fisik yang dikelola meliputi buku teks, buku tugas akhir, buku tesis, jurnal, majalah, serta prosiding seminar nasional. Setiap tahunnya, perpustakaan ITS memperoleh alokasi dana untuk  pengadaan buku cetak sebesar 1 M, e-journal sebesar 6 M, dan 300 juta untuk pengadaan e-book. Akan tetapi, dana tidak terserap dengan baik dan feedback untuk pengadaan bahan pustaka ke ULP tidak berjalan maksimal dikarenakan pustakawan mengalami kesulitan ketika melakukan proses seleksi judul-judul bahan pustaka yang akan diajukan ke ULP untuk dibeli. Hal ini menyebabkan bahan pustaka, khususnya buku, yang dibeli kebanyakan tidak sesuai dengan kebutuhan pengguna. Untuk itu diperlukan upaya mencari informasi buku baru sebagai bahan pustaka yang sesuai dengan kebutuhan pengguna berbasis teknologi informasi. Berdasarkan data pengadaan buku di perpustakaan ITS lebih didominasi oleh buku pengembangan yang mendukung referensi publikasi ilmiah. Publikasi ilmiah yang dilakukan oleh para dosen mayoritas merupakan luaran dari penelitian dosen. Oleh karena itu, pada penelitian ini diusulkan klasterisasi tren topik penelitian sebagai rekomendasi pengadaan bahan pustaka di Perpustakaan ITS. Penelitian ini menerapkan konsep text mining yang terdiri dari beberapa tahapan proses yaitu: text preprocessing, proses ekstraksi fitur, proses clustering, dan post-processing. Text preprocessing dilakukan untuk memperbaiki kualitas data teks, sehingga dapat menghasilkan klaster yang relevan dan akurat. Langkah-langkah pada tahap text preprocessing adalah case folding, tokenizing, filtering, dan stemming. Kemudian, dilakukan proses ekstraksi fitur yaitu dengan teknik pembobotan menggunakan Term Frequency dan Inverse Document Frequency (TF-IDF). Fitur-fitur yang dihasilkan pada tahap ekstraksi fitur dilakukan proses clustering menggunakan metode unsupervised learning untuk menghasilkan klaster topik penelitian. Tahap post-processing dilakukan untuk mengevaluasi dan menganalisa hasil klasterisasi tersebut yang selanjutnya digunakan sebagai rekomendasi pengadaan bahan pustaka, khususnya buku.

Page 1 of 1 | Total Record : 6