cover
Contact Name
Romi Satria Wahono
Contact Email
romi@brainmatics.com
Phone
-
Journal Mail Official
romi@brainmatics.com
Editorial Address
-
Location
,
INDONESIA
Journal of Intelligent Systems
Published by IlmuKomputer.com
ISSN : 23563982     EISSN : -     DOI : -
Core Subject : Science,
Journal of Intelligent Systems adalah jurnal ilmiah berkala yang memuat hasil penelitian pada bidang komputasi dan sistem cerdas dari aspek teori, praktis maupun aplikasi. Jurnal ini akan mempublikasikan makalah orisinal baik makalah technical maupun makalah survei atau review perkembangan terakhir (state-of-the-art) penelitian sistem cerdas.
Arjuna Subject : -
Articles 23 Documents
Integrasi Discrete Wavelet Transform dan Singular Value Decomposition pada Watermarking Citra untuk Perlindungan Hak Cipta Chandra, Jaya; Wahono, Romi Satria
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1016.522 KB)

Abstract

Tren masalah watermarking pada sekarang ini adalah bagaimana mengoptimalkan trade-off antara imperceptibility (visibilitas) citra ter-watermark terhadap pengaruh distorsi dan robustness terhadap penyisipan watermark. Masalah menggunakan kekuatan penyisipan berdasarkan Single Scaling Factor (SSF) atau Multiple Scaling Factor (MSF) juga ditemukan. Penelitian ini mengusulkan metode penyisipan watermark untuk perlindungan hak cipta pada citra dan algoritma ekstraksi citra ter-watermark yang dioptimalkan dengan penggabungan Discrete Wavelet Transform (DWT) dan Singular Value Decomposition (SVD). Nilai-nilai singular dari LL3 koefisien sub-band dari citra host dimodifikasi menggunakan nilai tunggal citra watermark biner menggunakan MSFs. Kontribusi utama dari skema yang diusulkan adalah aplikasi DWT-SVD untuk mengidentifikasi beberapa faktor skala yang optimal. Hasil penelitian menunjukkan bahwa skema yang diusulkan menghasilkan nilai Peak Signal to Noise Ratio (PSNR) yang tinggi, yang menunjukkan bahwa kualitas visual gambar yang baik pada masalah citra watermarking telah mengoptimalkan trade-off. Trade-off antara imperceptibility (visibilitas) citra ter-watermark terhadap pengaruh distorsi dan robustness citra ter-watermark terhadap operasi pengolahan citra. Nilai PSNR yang didapat pada citra yang diujikan: baboon=53,184; boat=53,328; cameraman=53,700; lena=53,668; man=53,328; dan pepper sebesar 52,662.  Delapan perlakuan khusus pada hasil citra ter-watermark diujikan dan diekstraksi kembali yaitu JPEG 5%, Noise 5%, Gaussian filter 3x3, Sharpening, Histogram Equalization, Scaling 512-256, Gray Quantitation 1bit, dan Cropping 1/8. Hasil dari perlakuan khusus kemudian diukur nilai Normalized Cross-Correlation (NC) yang menghasilkan rata-rata semua citra diperoleh sebesar 0,999 dari satu. Hasil penelitian dari metode yang diusulkan lebih unggul nilai PSNR dan NC dari penelitian sebelumnya. Jadi dapat disimpulkan bahwa penerapan dengan metode DWT-SVD ini mampu menghasilkan citra yang robust namun memiliki tingkat imperceptibility yang cukup tinggi.
Integrasi Kromosom Buatan Dinamis Untuk Memecahkan Masalah Konvergensi Prematur Pada Algoritma Genetika Untuk Traveling Salesman Problem Kamal, Muhammad Rikzam; Wahono, Romi Satria; Syukur, Abdul
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (693.322 KB)

Abstract

Genetic Algorithm (GA) adalah metode adaptif yang digunakan untuk memecahkan masalah pencarian dan optimasi, diantaranya adalah Travelling Salesman Problem (TSP) yang merupakan persoalan optimasi, dimana rute terpendek merupakan solusi yang paling optimal. GA juga salah satu metode optimisasi global yang bekerja dengan baik dan efisien pada fungsi tujuan yang kompleks dalam hal nonlinear, tetapi GA mempunyai masalah yaitu konvergensi prematur. Untuk mengatasi masalah konvergensi prematur, maka pada penelitian ini diusulkan Dynamic Artificial Chromosomes (DAC) yang digunakan untuk mengkontrol keragaman populasi dan juga seleksi kromosom terbaik untuk memilih individu atau kromosom terbaik yang tujuannya untuk membuat keragaman pada populasi menjadi beragam dan keluar dari konvergensi prematur. Beberapa eksperimen dilakukan dengan menggunakan Genetic Algorithm Dynamic Artificial Chromosomes (GA-DAC), dimana threshold terbaik adalah 0.5, kemudian juga mendapatkan hasil perbaikan pada jarak terpendek yang dibandingkan dengan GA standar dengan dataset KroA100 sebesar 12.60%, KroA150 sebesar 13.92% dan KroA200 sebesar 12.92%. Untuk keragaman populasi mendapatkan hasil pada KroA100 sebesar 24.97%, KroA150 sebesar 50.84% dan KroA200 sebesar 49.08% dibandingkan dengan GA standar. Maka dapat disimpulkan bahwa GA-DAC bisa mendapatkan hasil lebih baik dibandingkan dengan GA standar, sehingga ini akan membuat GA bisa keluar dari konvergensi prematur. Keywords: algoritma genetika, konvergensi prematur, dynamic artificial chromosomes, seleksi kromosom terbaik, travelling salesman problem.
Penerapan Bootstrapping untuk Ketidakseimbangan Kelas dan Weighted Information Gain untuk Feature Selection pada Algoritma Support Vector Machine untuk Prediksi Loyalitas Pelanggan Naufal, Abdul Razak; Wahono, Romi Satria; Syukur, Abdul
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (776.065 KB)

Abstract

Prediksi loyalitas pelanggan merupakan sebuah strategi bisnis yang penting bagi industri telekomunikasi modern untuk memenangkan persaingan global, karena untuk mendapatkan pelanggan baru biayanya lebih mahal lima sampai enam kali lipat daripada mempertahankan pelanggan yang sudah ada. Klasifikasi loyalitas pelanggan bertujuan untuk mengidentifikasi pelanggan yang cenderung beralih ke perusahaan kompetitor yang sering disebut customer churn. Algoritma Support Vector Machine (SVM) adalah algoritma klasifikasi yang juga berfungsi untuk memprediksi loyalitas pelanggan. Penerapan algoritma SVM dalam memprediksi loyalitas pelanggan mempunyai kelemahan yang mempengaruhi keakuratan dalam memprediksi loyalitas pelanggan yaitu sulitnya pemilihan fungsi kernel dan penentuan nilai parameternya. Dataset yang besar pada umumnya mengandung ketidakseimbangan kelas (class imbalance), yaitu adanya perbedaan yang signifikan antar jumlah kelas, yang mana kelas negatif lebih besar daripada kelas positif. Dalam penelitian ini diusulkan metode resampling bootstrapping untuk mengatasi ketidakseimbangan kelas. Selain itu dataset juga mengandung fitur yang tidak relevan sehingga dalam pemilihan fitur dalam penelitian ini digunakan metode dua fitur seleksi yaitu Forward Selection (FS) dan Weighted Information Gain (WIG). FS berfungsi untuk menghilangkan fitur yang paling tidak relevan serta membutuhkan waktu komputasi yang relatif pendek dibandingkan dengan backward elimination dan stepwise selection. WIG digunakan untuk memberi nilai bobot pada setiap atribut, karena WIG lebih cocok digunakan dalam memilih fitur terbaik daripada Principal Component Analysis (PCA) yang biasa digunakan untuk mereduksi data yang berdimensi tinggi. Tujuan pembobotan ini untuk merangking atribut yang memenuhi kriteria (threshold) yang ditentukan dipertahankan untuk digunakan oleh algoritma SVM.  Sedangkan untuk pemilihan parameter algoritma SVM dengan menggunakan metode grid search. Metode grid search dapat mencari nilai parameter terbaik dengan memberi range nilai parameter. Grid search juga sangat handal jika diaplikasikan pada dataset yang mempunyai atribut sedikit daripada menggunakan random search. Hasil eksperimen dari beberapa kombinasi parameter dapat disimpulkan bahwa prediksi loyalitas pelanggan dengan menggunakan sampel bootstrapping, FS-WIG serta grid search lebih akurat dibanding dengan metode individual SVM.
Penerapan Naive Bayes untuk Mengurangi Data Noise pada Klasifikasi Multi Kelas dengan Decision Tree Khadafy, Al Riza; Wahono, Romi Satria
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (859.638 KB)

Abstract

Selama beberapa dekade terakhir, cukup banyak algoritma data mining yang telah diusulkan oleh peneliti kecerdasan komputasi untuk memecahkan masalah klasifikasi di dunia nyata. Di antara metode-metode data mining lainnya, Decision Tree (DT) memiliki berbagai keunggulan diantaranya sederhana untuk dipahami, mudah untuk diterapkan, membutuhkan sedikit pengetahuan, mampu menangani data numerik dan kategorikal, tangguh, dan dapat menangani dataset yang besar. Banyak dataset berukuran besar dan memiliki banyak kelas atau multi kelas yang ada di dunia memiliki noise atau mengandung error. Algoritma pengklasifikasi DT memiliki keunggulan dalam menyelesaikan masalah klasifikasi, namun data noise yang terdapat pada dataset berukuran besar dan memiliki banyak kelas atau multi kelas dapat mengurangi akurasi pada klasifikasinya. Masalah data noise pada dataset tersebut akan diselesaikan dengan menerapkan pengklasifikasi Naive Bayes (NB) untuk menemukan instance yang mengandung noise dan menghapusnya sebelum diproses oleh pengklasifikasi DT. Pengujian metode yang diusulkan dilakukan dengan delapan dataset uji dari UCI (University of California, Irvine) machine learning repository dan dibandingkan dengan algoritma pengklasifikasi DT. Hasil akurasi yang didapat menunjukkan bahwa algoritma yang diusulkan DT+NB lebih unggul dari algoritma DT, dengan nilai akurasi untuk masing-masing dataset uji seperti Breast Cancer 96.59% (meningkat 21,06%), Diabetes 92,32% (meningkat 18,49%), Glass 87,50% (meningkat 20,68%), Iris 97,22% (meningkat 1,22%), Soybean 95,28% (meningkat 3,77%), Vote 98,98% (meningkat 2,66%), Image Segmentation 99,10% (meningkat 3,36%), dan Tic-tac-toe 93,85% (meningkat 9,30%). Dengan demikian dapat disimpulkan bahwa penerapan NB terbukti dapat menangani data noise pada dataset berukuran besar dan memiliki banyak kelas atau multi kelas sehingga akurasi pada algoritma klasifikasi DT meningkat.
Penerapan Exponential Smoothing untuk Transformasi Data dalam Meningkatkan Akurasi Neural Network pada Prediksi Harga Emas Suryani, Indah; Wahono, Romi Satria
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (895.101 KB)

Abstract

Emas menjadi salah satu logam mulia yang paling banyak diminati baik untuk investasi maupun untuk dijadikan perhiasan. Memprediksi harga emas telah menjadi signifikan dan sangat penting bagi investor karena emas merupakan alat yang penting untuk perlindungan nilai resiko serta sebagai jalan investasi. Metode Neural Network merupakan salah satu model yang paling banyak digunakan dalam berbagai bidang penelitian. Neural Network memiliki banyak  fitur yang diinginkan yang sangat cocok untuk aplikasi peramalan. Namun sebagai sistem black box, pemodelan Neural Network sepenuhnya tergantung pada input dan output data sehingga kualitas dan distribusi set sampel pembelajaran penting bagi kemampuan generalisasi jaringan. Maka pada penelitian ini, metode Exponential Smoothing digunakan untuk melakukan transformasi data guna meningkatkan kualitas data sehingga dapat meningkatkan akurasi prediksi pada Neural Network. Eksperimen yang dilakukan pada penelitian ini adalah untuk memperoleh arsitektur optimal sehingga menghasilkan prediksi harga emas yang akurat. Penelitian ini menggunakan Neural Network dan Exponential Smoothing dengan 10 kombinasi parameter pada eksperimen yang dilakukan.  Kesimpulan yang didapatkan dari eksperimen yang dilakukan adalah bahwa prediksi harga emas menggunakan Neural Network dan Exponential Smoothing lebih akurat dibanding metode individual Neural Network.Key Words: emas, prediksi, neural network, exponential smoothing, 
Hybrid Keyword Extraction Algorithm and Cosine Similarity for Improving Sentences Cohesion in Text Summarization Darmawan, Rizki; Wahono, Romi Satria
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (511.983 KB)

Abstract

As the amount of online information increases, systems that can automatically summarize text in a document become increasingly desirable. The main goal of a text summarization is to present the main ideas in a document in less space. In the create text summarization, there are two procedures which are extraction and abstraction procedure. One of extraction procedure is using keyword extraction algorithm which is easier and common but has problems in the lack of cohesion or correlation between sentences. The cohesion between sentences can be applied by using a cosine similarity method. In this study, a hybrid keyword extraction algorithm and cosine similarity for improving sentences cohesion in text summarization has been proposed. The proposed method using compression various compression ratios is used to create candidate of the summary. The result show that proposed method could affect significant increasing cohesion degree after evaluated in the t-Test. The result also shows that 50% compression ratio obtains the best result with Recall, Precision, and F-Measure are 0.761, 0.43 and 0.54 respectively; since summary with compression ratio 50% has higher intersection with human summary than another compression ratio. Keywords: text summarization, keyword extraction, cosine similarity, cohesion
Comparative Analysis of Mamdani, Sugeno and Tsukamoto Method of Fuzzy Inference System for Air Conditioner Energy Saving Saepullah, Aep; Wahono, Romi Satria
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (573.534 KB)

Abstract

Air Conditioner (AC) nowadays is one of the electrical equipment commonly used in human daily life to reduce the heat, especially for communities who live in the hot weather area. But in the other side, air conditioner usage has a shortage such as a huge electrical energy consumption of air conditioning and it reach 90% of the total electrical energy that was needed by a household, and that especially happen when operated at the peak load electricity time or around 17:00 until 22:00, and it will cause a deficit of power supplies for use by other household appliances. In this paper will be conducted analysis and comparison between Mamdani, Sugeno and Tsukamoto method on fuzzy inference systems to find a best method in terms of reduction in electrical energy consumption of air conditioner by using Room Temperature and Humidity as input variables and Compressor speed as output variable. In this research, experiments was performed by using crisp input of room temperature 11OC, 21% humidity, room temperature 14OC, 41% humidity, room temperature 27OC, 44% humidity and room temperature 33OC, 68% humidity. The results of experiments showed that the best method in terms of reduction in electrical energy consumption of air conditioning system is a method of Tsukamoto where the average electrical energy efficiency achieved by 74,2775%.
Integrasi Metode Sample Bootstrapping dan Weighted Principal Component Analysis untuk Meningkatkan Performa k Nearest Neighbor pada Dataset Besar Setiawan, Tri Agus; Wahono, Romi Satria; Syukur, Abdul
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (684.42 KB)

Abstract

Abstract: Algoritma k Nearest Neighbor (kNN) merupakan metode untuk melakukan klasifikasi terhadap objek baru berdasarkan k tetangga terdekatnya. Algoritma kNN memiliki kelebihan karena sederhana, efektif dan telah banyak digunakan pada banyak masalah klasifikasi. Namun algoritma kNN memiliki kelemahan jika digunakan pada dataset yang besar karena membutuhkan waktu komputasi cukup tinggi. Pada penelitian ini integrasi metode Sample Bootstrapping dan Weighted Principal Component Analysis (PCA) diusulkan untuk meningkatkan akurasi dan waktu komputasi yang optimal pada algoritma kNN. Metode Sample Bootstrapping digunakan untuk mengurangi jumlah data training yang akan diproses. Metode Weighted PCA digunakan dalam mengurangi atribut. Dalam penelitian ini menggunakan dataset yang memiliki dataset training yang besar yaitu Landsat Satellite sebesar 4435 data dan Tyroid sebesar 3772 data. Dari hasil penelitian, integrasi algoritma kNN dengan Sample Bootstrapping dan Weighted PCA pada dataset Landsat Satellite akurasinya meningkat 0.77% (91.40%-90.63%) dengan selisih waktu 9 (1-10) detik dibandingkan algoritma kNN standar. Integrasi algoritma kNN dengan Sample Bootstrapping dan Weighted PCA pada dataset Thyroid akurasinya meningkat 3.10% (89.31%-86.21%) dengan selisih waktu 11 (1-12) detik dibandingkan algoritma kNN standar. Dari hasil penelitian yang dilakukan, dapat disimpulkan bahwa integrasi algoritma kNN dengan Sample Bootstrapping dan Weighted PCA menghasilkan akurasi dan waktu komputasi yang lebih baik daripada algoritma kNN standar. Keywords: algoritma kNN, Sample Bootstrapping, Weighted PCA
Penerapan Algoritma Genetika untuk Optimasi Parameter pada Support Vector Machine untuk Meningkatkan Prediksi Pemasaran Langsung Ispandi, Ispandi; Wahono, Romi Satria
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (343.057 KB)

Abstract

Abstract: Pemasaran langsung adalah proses mengidentifikasi potensi pembeli produk tertentu dan mempromosikan produk dengan sesuai. pelaksanaan pemasaran langsung dari waktu ke waktu menghasilkan data dan informasi dalam bentuk laporan yang perlu di analisis oleh manajer dalam rangka mendukung keputusan. Namun itu adalah tugas yang sulit bagi manusia untuk menganalisis data yang kompleks yang luas. Kesulitan ini menyebabkan perkembangan teknik intelejen bisnis, yang bertujuan mengklasifikasi pengetahuan yang berguna untuk mendukung pengambilan keputusan. Metode support vector machine mampu mengatasi masalah yang berdimensi tinggi, mengatasi masalah klasifikasi dan regresi dengan linier ataupun nonlinier kernel yang dapat menjadi satu kemampuan algoritma pembelajaran untuk klasifikasi serta regresi, namun support vector machine memiliki masalah dalam pemilihan parameter yang sesuai. Untuk mengatasi masalah tersebut di perlukan metode algoritma genetika untuk pemilihan parameter yang sesuai pada metode support vector machine. Beberapa eksperimen dilakukan untuk mendapatkan akurasi yang optimal. Hasil penelitian menunjukan, eksperimen dengan menggunakan metode support vector machine dan algoritma genetika yang digunakan untuk melakukan optimasi parameter C, γ dan ε dengan tiga jenis kernel. Kernel pertama tipe kernel dot dengan akurasi sebesar 85,59%, AUC sebesar 0,911 yang kedua tipe kernel radial dengan akurasi sebesar 98.89%, AUC sebesar 0,981 dan yang ketiga dengan tipe kernel Polynomial dengan akurasi sebesar 98.67% dan AUC sebesar 0.938. Hasil eksperimen tersebut menunjukan pengujian data set menggunakan penerapan algoritma genetika pada support vector machine menunjukan hasil yang lebih akurat untuk prediksi pemasaran langsung.. 
Penanganan Fitur Kontinyu dengan Feature Discretization Berbasis Expectation Maximization Clustering untuk Klasifikasi Spam Email Menggunakan Algoritma ID3 Safuan, .; Wahono, Romi Satria; Supriyanto, Catur
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (908.039 KB)

Abstract

Pemanfaatan jaringan internet saat ini berkembang begitu pesatnya, salah satunya adalah pengiriman surat elektronik atau email. Akhir-akhir ini ramai diperbincangkan adanya spam email. Spam email adalah email yang tidak diminta dan tidak diinginkan dari orang asing yang dikirim dalam jumlah besar ke mailing list, biasanya beberapa dengan sifat komersial. Adanya spam ini mengurangi produktivitas karyawan karena harus meluangkan waktu untuk menghapus pesan spam. Untuk mengatasi permasalahan tersebut dibutuhkan sebuah filter email yang akan mendeteksi keberadaan spam sehingga tidak dimunculkan pada inbox mail. Banyak peneliti yang mencoba untuk membuat filter email dengan berbagai macam metode, tetapi belum ada yang menghasilkan akurasi maksimal. Pada penelitian ini akan dilakukan klasifikasi dengan menggunakan algoritma Decision Tree Iterative Dicotomizer 3 (ID3) karena ID3 merupakan algoritma yang paling banyak digunakan di pohon keputusan, terkenal dengan kecepatan tinggi dalam klasifikasi, kemampuan belajar yang kuat dan konstruksi mudah. Tetapi ID3 tidak dapat menangani fitur kontinyu sehingga proses klasifikasi tidak bisa dilakukan. Pada penelitian ini,  feature discretization berbasis Expectation Maximization (EM) Clustering digunakan  untuk merubah fitur kontinyu menjadi fitur diskrit, sehingga proses klasifikasi spam email bisa dilakukan. Hasil eksperimen menunjukkan ID3 dapat melakukan klasifikasi spam email dengan akurasi 91,96% jika menggunakan data training 90%. Terjadi peningkatan sebesar 28,05% dibandingkan dengan klasifikasi ID3 menggunakan binning.

Page 2 of 3 | Total Record : 23


Filter by Year

2015 2015