cover
Contact Name
Romi Satria Wahono
Contact Email
romi@brainmatics.com
Phone
-
Journal Mail Official
romi@brainmatics.com
Editorial Address
-
Location
,
INDONESIA
Journal of Intelligent Systems
Published by IlmuKomputer.com
ISSN : 23563982     EISSN : -     DOI : -
Core Subject : Science,
Journal of Intelligent Systems adalah jurnal ilmiah berkala yang memuat hasil penelitian pada bidang komputasi dan sistem cerdas dari aspek teori, praktis maupun aplikasi. Jurnal ini akan mempublikasikan makalah orisinal baik makalah technical maupun makalah survei atau review perkembangan terakhir (state-of-the-art) penelitian sistem cerdas.
Arjuna Subject : -
Articles 23 Documents
Optimasi Parameter Pada Metode Support Vector Machine Berbasis Algoritma Genetika untuk Estimasi Kebakaran Hutan Harafani, Hani; Wahono, Romi Satria
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1016.097 KB)

Abstract

Kebakaran hutan merupakan salah satu masalah lingkungan yang mengancam hutan, menimbulkan dampak negatif pada lingkungan, menciptakan masalah ekonomi, dan kerusakan ekologis, serta menyebabkan kerugian penting di seluruh dunia setiap tahunnya. Estimasi area yang terbakar penting dilakukan, karena area yang terbakar dapat mencerminkan berapa kuat radiasi api pada vegetasi disekitarnya. SVM dapat mengatasi masalah klasifikasi dan regresi linier ataupun nonlinier kernel yang dapat menjadi satu kemampuan algoritma pembelajaran untuk klasifikasi serta regresi. Namun, SVM juga memiliki kelemahan yaitu sulitnya menentukan nilai parameter yang optimal. Untuk menyelesaikan permasalahan tersebut algoritma genetika diusulkan untuk diterapkan sebagai algoritma pencarian nilai parameter yang efisien pada SVM. Beberapa eksperimen dilakukan untuk menghasilkan estimasi yang akurat. Awalnya percobaan dilakukan pada kernel –kernel SVM (dot, RBF, polynomial) untuk menentukan kernel mana yang akan digunakan, kemudian model SVM+GA juga dibandingkan dengan model regresi lainnya seperti Linear Regression, k-NN, dan Neural Network. Berdasarkan eksperimen dengan 10 kombinasi parameter pada metode SVM dan SVM+GA dengan kernel dot, RMSE terkecil dihasilkan oleh model SVM+GA sebesar 1.379, sementara pada percobaan SVM dan SVM+GA dengan kernel polynomial RMSE terkecil diperoleh model SVM+GA sebesar 1.379, sedangkan pada percobaan SVM dan SVM+GA dengan kernel RBF diperoleh RMSE terkecil pada model SVM+GA sebesar 1.379.Selanjutnya berdasarkan perbandingan rata-rata RMSE, kernel RBF unggul dengan nilai RMSE terkecil yaitu 1.432 pada SVM, dan 1.418 pada SVM+GA. Pada perbandingan nilai rata-rata RMSE antara SVM(RBF)+GA dengan model lainnya, RMSE terkecil dihasilkan oleh SVM(RBF)+GA yaitu sebesar 1.418, disusul dengan model SVM(RBF) sebesar 1.432, keudian Linear Regression sebesar 1.459, dilanjutkan oleh model k-NN sebesar 1.526 dan yang terakhir adalah NN dengan nilai RMSE sebesar 1.559. maka dapat disimpulkan bahwa optimasi parameter yang dilakukan GA pada model SVM terbukti dapat mengurangi tingkat error pada model SVM tanpa optimasi parameter pada dataset forestfire, selain model SVM(RBF)+GA pada penelitian ini juga terbukti lebih baik dari model regresi lainnya
Integrasi Metode Information Gain untuk Seleksi Fitur dan AdaBoost untuk Mengurangi Bias pada Analisis Sentimen Review Restoran Menggunakan Algoritma Naive Bayes Utami, Lila Dini; Wahono, Romi Satria
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (643.616 KB)

Abstract

Internet merupakan bagian penting dari kehidupan sehari-hari. Saat ini, tidak hanya dari anggota keluarga dan teman-teman, tetapi juga dari orang asing yang berlokasi diseluruh dunia yang mungkin telah mengunjungi restoran tertentu. Konsumen dapat memberikan pendapat mereka yang sudah tersedia secara online. Ulasan yang terlalu banyak akan memakan banyak waktu dan pada akhirnya akan menjadi bias. Klasifikasi sentimen bertujuan untuk mengatasi masalah ini dengan cara mengklasifikasikan ulasan pengguna ke pendapat positif atau negatif. Pengklasifikasi Naive Bayes adalah tekhnik machine learning yang populer untuk klasifikasi teks, karena sangat sederhana, efisien dan memiliki performa yang baik pada banyak domain. Namun, Naive Bayes memiliki kekurangan yaitu sangat sensitif pada fitur yang terlalu banyak, sehingga membuat akurasi menjadi rendah. Oleh karena itu, dalam penelitian ini menggunakan Information Gain sebagai seleksi fitur dan metode AdaBoost untuk mengurangi bias agar dapat meningkatkan akurasi pengklasifikasi Naive Bayes. Penelitian ini menghasilkan klasifikasi teks dalam bentuk positif dan negatif dari review restoran. Pengukuran berdasarkan akurasi Naive Bayes sebelum dan sesudah penambahan metode pemilihan fitur. Validasi dilakukan dengan menggunakan 10 fold cross validation. Sedangkan pengukuran akurasi diukur dengan confusion matrix dan kurva ROC. Hasil penelitian menunjukkan peningkatan akurasi Naive Bayes dari 73.00% jadi 81.50% dan nilai AUC dari 0.500 jadi 0.887. Sehingga dapat disimpulkan bahwa integrasi metode Information Gain dan AdaBoost pada analisis sentimen review restoran ini mampu meningkatkan akurasi algoritma Naive Bayes.
Penerapan Metode Average Gain, Threshold Pruning dan Cost Complexity Pruning Untuk Split Atribut Pada Algoritma C4.5 Rahayu, Erna Sri; Wahono, Romi Satria; Supriyanto, Catur
Journal of Intelligent Systems Vol 1, No 2 (2015)
Publisher : IlmuKomputer.Com

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (695.078 KB)

Abstract

C4.5 is a supervised learning classifier to establish a Decision Tree of data. Split attribute is main process in the formation of a decision tree in C4.5. Split attribute in C4.5 can not be overcome in any misclassification cost split so the effect on the performance of the classifier. After the split attributes, the next process is pruning. Pruning is process to cut or eliminate some of unnecessary branches. Branch or node that is not needed can cause the size of Decision Tree to be very large and it is called over- fitting. Over- fitting is state of the art for this time. Methods for split attributes are Gini Index, Information Gain, Gain Ratio and Average Gain which proposed by Mitchell. Average Gain not only overcome the weakness in the Information Gain but also help to solve the problems of Gain Ratio. Attribute split method which proposed in this research is use average gain value multiplied by the difference of misclassification. While the technique of pruning is done by combining threshold pruning and cost complexity pruning. In this research, testing the proposed method will be applied to datasets and then the results of performance will be compared with results split method performance attributes using the Gini Index, Information Gain and Gain Ratio. The selecting method of split attributes using average gain that multiplied by the difference of misclassification can improve the performance of classifiying C4.5. This is demonstrated through the Friedman test that the proposed split method attributes, combined with threshold pruning and cost complexity pruning have accuracy ratings in rank 1. A Decision Tree formed by the proposed method are smaller. Keyword: Decision Tree, C4.5, split attribute, pruning, over-fitting, gain, average gain.

Page 3 of 3 | Total Record : 23


Filter by Year

2015 2015