cover
Contact Name
Eko Handayanto
Contact Email
handayanto@ub.ac.id
Phone
-
Journal Mail Official
handayanto@ub.ac.id
Editorial Address
-
Location
Kota malang,
Jawa timur
INDONESIA
Journal of Degraded and Mining Lands Management
Published by Universitas Brawijaya
ISSN : 2339076X     EISSN : 25022458     DOI : -
Journal of Degraded and Mining Lands Management is managed by the International Research Centre for the Management of Degraded and Mining Lands (IRC-MEDMIND), research collaboration between Brawijaya University, Mataram University, Massey University, and Institute of Geochemistry, Chinese Academy of Sciences-China Papers dealing with result of original research, and critical reviews on aspects directed to the management of degraded and mining lands covering topography of a landscape, soil and water quality, biogeochemistry, ecosystem structure and function, and environmental, economic, social and health impacts are welcome with no page charge
Arjuna Subject : -
Articles 19 Documents
Search results for , issue "Vol 9, No 2 (2022)" : 19 Documents clear
Groundwater quality mapping for drinking and irrigation purposes using statistical, hydrochemical facies, and water quality indices in Tercha District, Dawuro Zone, Southern Ethiopia Arefegn Arota; Abunu Atlabachew; Abel Abebe; Muralitharan Jothimani
Journal of Degraded and Mining Lands Management Vol 9, No 2 (2022)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2022.092.3367

Abstract

When groundwater quality is good, it may be a substantial water supply for various applications. However, no systematic research on hydrogeochemistry and water quality features for drinking and irrigation has been undertaken in the present study area. As a result, the current study looked at hydrogeochemical variables and groundwater quality for drinking and irrigation in Tercha district, Dawuro Zone, Southern Ethiopia. Forty-seven groundwater samples were collected and tested to satisfy the required target for various physicochemical properties. The hydrogeochemical features of the groundwater in the study region were assessed using in-situ testing and laboratory analysis of physicochemical parameters. Groundwater samples from the research region were slightly acidic to slightly basic, with the principal cations and anions decreasing in sequence: Na+ > Ca2+ > Mg2+ > K+ and HCO3-> Cl-> SO42-. The hadrochemical facies of the studied region evolved from mildly mineralized dominant highland Ca-HCO3 water types to moderately mineralized mixed Ca-Na-HCO3 water types to highly mineralized deep rift floor Na-HCO3 water types. Additionally, the World Health Organization and the Ethiopian Standard Agency were utilized to compare the drinking water quality. Except for NO3- (4.25 %), Fe (8.51 %), and F- (2.12%), all groundwater samples from the research region were determined to be within permitted limits and appropriate for drinking. According to the Water Quality Index, about 80.86% of groundwater samples are excellent, and 19.14% are good drinking water. Sodium absorption ratio (SAR), sodium (Na) percentage, residual sodium carbonate RSC, permeability index (PI), and magnesium hazard were among the irrigation water quality indicators calculated (MH). The great majority of groundwater samples are suitable for agricultural use.
Determination of heavy metal elements concentration in soils and tailing sediments from lateritic nickel post-mining areas in Motui District, Southeast Sulawesi Muhardi Mustafa; Adi Maulana; Ulva Ria Irfan; Adi Tonggiroh
Journal of Degraded and Mining Lands Management Vol 9, No 2 (2022)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2022.092.3273

Abstract

Heavy metal elements concentration study has been determined from soils and tailing sediments in laterite nickel post-mining area in Motui District Southeast Sulawesi. This study aimed to determine the concentration of some heavy metal elements, especially Fe, Co, Mn and Cr, from surface soils sediments in waste dump sites and tailing sediments in settling ponds from lateritic nickel post-mining areas. A total of 20 samples consisting of 18 soil samples and 2 tailing sediments samples were systematically collected for the study. The soil samples from the waste dump site profile were collected from 3 layers which were divided based on the colour of the soils from top to bottom, namely Layer C, Layer D and Layer E. Six soil samples were taken from each layer with space between each sample in one layer was about 50 – 60 cm. The samples were sent to the laboratory and analysed using Atomic Absorption Spectrometer (AAS) method to determine the concentration of heavy elements. Metal-bearing minerals detected from the bedrock consists of chromite, manganese, magnetite and limonite which are responsible for the Cr, Mn and Co, and Fe content, respectively. The result showed that Fe content is significantly higher in soil samples from Layer C and tailing sediments with dark red to brown in colour, suggesting the strong relation between Fe content and colour index. The general element mobility trend showed that Mn and Co are positively correlated in soil sampling from all layers and tailing samples, whereas Fe and Cr show a negative correlation trend in Layer C, D and tailing sediments but positively correlated in Layer E.
An overview of technologies suitable for handling Indonesian agricultural soils contaminated with persistent organic pollutants Dwindrata Basuki Aviantara; Mohamad Yani; Nastiti Siswi Indrasti; Gunawan Hadiko
Journal of Degraded and Mining Lands Management Vol 9, No 2 (2022)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2022.092.3415

Abstract

Since Indonesia have signed and ratified Stockholm Convention on Persistent Organic Pollutants (POPs) in 2009, the country must make efforts to manage POPs appropriately. A number of pollution evident of POPs has occurred in Indonesia, either air, soil or water. Agricultural soils are not excluded from POPs pollution as the result of halogenated pesticide uses or other unidentified sources. Contamination of POPs to humans have been detected, as well as indicated potential exposure of POPs to humans. Based-catalyzed decomposition is a method that can be used to decompose or decontaminate POPs. Limestone can be processed to produce calcium-based catalyst that can apply for POPs decomposition. Indonesia is a country rich in limestone natural resources to produce calcium. However, calcium is inferior to sodium or potassium in reactivity for the dehalogenation of POPs. Thus, more evaluation is needed in order for synthesizing proper and economical calcium-based catalyst to alleviate POPs pollution in Indonesia.
Do natural landscapes contribute to reducing Land Surface Temperature (LST)? A case study from Muthurajawela wetland, Sri Lanka Harsha Dahanayake; Deepthi Wickramasinghe; DDGL Dahanayaka
Journal of Degraded and Mining Lands Management Vol 9, No 2 (2022)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2022.092.3329

Abstract

Microclimate regulation is one of the most significant ecosystem services provided by wetlands. The present study attempted to investigate the cooling effect provided by Muthurajawela, a coastal Ramsar wetland using Remote Sensing and GIS.  The variation of Land Surface Temperatures (LST) over different land use categories of natural (water bodies, marsh, thick vegetation, grassland) and anthropogenic (built-up areas, coconut cultivations and bare lands) areas in 2015 and 2020. Parameters including Satellite Brightness Temperature, Normalized Difference Vegetation Index, Proportion of Vegetation and Land Surface Emissivity were calculated along eight transects starting from the center of the water body and extending up to 5 km from the boundary of the wetland. The results revealed that LST over areas under natural land cover (2015 - mean 25.040C, 2020 - mean 23.360C) were significantly lower than that of areas under anthropogenic influence (2015 - mean 26.520C and 2020 - mean 26.220C). The lowest increase of LST was over the water body and the highest was over the built-up areas indicating the buffering capacity of wetlands. As air temperatures are highly linked to LST, our findings suggest that wetlands contribute to lower atmospheric temperature and offer cooling effects during dry months. Acknowledging the importance of wetlands in reducing temperature, at least in a local scale, justifies the need of conserving these ecosystems, as seeking mitigatory measures for climate change driven frequent heating effects is challenging.
Utilization of Tithonia diversifolia and sugarcane leaves to improve soil properties and plant growth on a sandy soil of Malang, East Java Yulfita Farni; Retno Suntari; Sugeng Prijono
Journal of Degraded and Mining Lands Management Vol 9, No 2 (2022)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2022.092.3227

Abstract

A study on the addition of organic matter of different qualities was carried out to improve plant growth on a degraded sandy soil of Bambang Village, Wajak Malang, East Java. Two potential sources of organic matter in Bambang Village are Tithonia diversifolia and sugarcane leaves. This study aimed at elucidating the changes in some chemical properties of a degraded sandy soil of Malang, East Java, and nutrient uptake and growth of maize plants by applying mixtures of Tithonia diversifolia and sugarcane leaves of different quality. Treatments tested in this study were mixtures of Tithonia diversifolia leaves and sugarcane leaves at various proportions (%w/w), i.e. 100% Tithonia diversifolia leaves (T1), 100% sugarcane leaves (T2), 75% Tithonia diversifolia leaves + 25% sugarcane leaves (T3), 50% Tithonia diversifolia leaves + 50% sugarcane leaves (T4); without organic matters (T6), and control, without organic matter and inorganic fertilizers (T7). The results showed that the application of Tithonia diversifolia and sugarcane leaves affected soil pH, soil exchangeable bases, maize growth, and nutrients uptake. Nutrients taken up by maize plants significantly increased with the addition of Tithonia diversifolia leaves, either alone or in combination with sugarcane leaves. The application of 100% sugarcane leaves did not significantly affect maize growth and nutrient uptake.
Effect of application compost and vermicompost from market waste on soil chemical properties and plant growth Syarifinnur Syarifinnur; Yulia Nuraini; Budi Prasetya
Journal of Degraded and Mining Lands Management Vol 9, No 2 (2022)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2022.092.3379

Abstract

This study was conducted to determine the effect of compost and vermicompost from market organic waste on the soil chemical properties and the growth of maize. The treatments tested were three doses of compost (2.5, 5, and 10 t/ha), three doses of vermicompost (2.5, 5, and 10 t/ha), and one control (without compost or vermicompost). At the time of harvest (10 weeks after planting), maize shoot dry weight, root dry weight, cob length, cob diameter, cob with husk, and cob dry weight, as well as the soil chemical properties organic carbon (C), total nitrogen (N), total phosphorus (P), available P, total potassium (K), and pH were observed. Maize plant height, leaf number, and stem diameter were observed at 2, 4, 6, and 8 weeks after planting. The results showed that the application of compost and vermicompost significantly affected soil chemical properties and the yield of maize. The application of 10 t vermicompost/ha resulted in the highest yield of maize and highest increase of soil organic carbon, total phosphorus available phosphorus, total potassium, and pH by 7.21%, 112.41%, 287.44%, 85.44% and 17.58%, respectively. The application of 10 t compost/ha resulted in the highest increase of soil total N by 44%.
Identification of subsidence hazard zone by integrating engineering geological mapping and electrical resistivity tomography in Gunung Kidul karst area, Indonesia Wahyu Wilopo; Doni Prakasa Eka Putra; Teuku Faisal Fathani; Slamet Widodo; Galeh Nur Indriatno Putra Pratama; Maris Setyo Nugroho; Wisnu Rachmad Prihadi
Journal of Degraded and Mining Lands Management Vol 9, No 2 (2022)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2022.092.3281

Abstract

The presence of natural cavities in karst morphology may cause severe civil engineering and environmental management problems. Karst formations will limit the expansion of urbanization, especially infrastructure development in limestone areas. Geophysical methods, especially electrical resistivity tomography (ERT) techniques, are effective and efficient solutions to detect voids below the surface. This study aimed to develop a subsidence hazard map as basic information for infrastructure development. The identification was made by measuring electrical resistivity tomography on eight profiles in the infrastructure development plan. In addition, it was also supported by geological mapping, particularly the structural geology and types of rocks around the site. The research area consists of massive limestone, bedded limestone, and cavity limestone with generally north-south joints. The analysis of geological mapping data and electrical resistivity tomography measurements showed that the cavity limestone was identified with a north-south elongated pattern in line with the fracture pattern found on the surface at the research area. The surface lithology type, the geological structures density, and the subsurface lithology were used to develop a subsidence hazard map. This information is beneficial in determining the safe location of infrastructure development based on disaster risk mitigation.
Nitrogen released from sago pulp waste and Gliricidia sepium pruning mixtures on a Dystrudept of Central Moluccas and its effect on the growth of maize June Annethe Putinella; Yulia Nuraini; Budi Prasetya
Journal of Degraded and Mining Lands Management Vol 9, No 2 (2022)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2022.092.3341

Abstract

The agricultural sector is the mainstay of the economy in Central Moluccas. However, most agricultural soils on the island have low soil fertility. One of the efforts that farmers can make to improve soil fertility is to apply organic matter, which is widely found in Central Moluccas. This study aimed at elucidating the effect of mixing high-quality organic material (Glicidia sepium pruning) with low-quality organic material (sago pulp waste) on the improvement of available nitrogen in an acid soil (Dystrudept) and growth of maize. Two experiments were carried out in a laboratory and a greenhouse. The compositions of the mixtures of sago pulp waste (A) and pruning of Gliricidia sepium (G) were A0 G100; A20G80; A40G60; A60G40; A80G20, and A100G0. Six treatments and one control (no application of residues) were arranged in a completely randomized design. The results showed that the application of the mixture of 20% and 80% of Gliricidia sepium pruning (A20G80) increased the cumulative amount of mineral N in the soil higher than that of the other organic material mixtures, which in turn improved maize growth.
Growth performance of Tilapia (Oreochromis niloticus) cultivated in water from ex-sand pit lakes by phytoremediation treatments Henni Wijayanti Maharani; Qadar Hasani; Muhammad Ariful Aimma; Deny Sapto Chondro Utomo; Limin Santoso; Nidya Kartini; Radho Al Kausar
Journal of Degraded and Mining Lands Management Vol 9, No 2 (2022)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2022.092.3237

Abstract

Utilization of ex-sand pit lakes for aquaculture is difficult due to low water quality and high concentrations of iron (Fe). Phytoremediation using aquatic plants has been proven to be effective in reducing Fe in waters. This study aims to determine the growth, feed conversion efficiency and survival rate of tilapia (Oreochromis niloticus) cultured with ex-sand mining water media with phytoremediation treatment. Phytoremediation treatment was carried out by Eichhornnia crassipes, Azolla pinnata, and Salvinia molesta. Fish culture experiments were carried out in plastic tarpaulin tanks for 40 days, with ad satiation feeding, three times a day using the commercial feed. The results showed that phytoremediation with aquatic plants had succeeded in reducing Fe to a level suitable for fish culture. Fish culture experiments showed an absolute length growth rate of 0.09-0.18 cm/day and an absolute weight growth rate of 0.11-0.16 g/day. The feed conversion ratio was 1.18-1.40 and the survival rate was 98.04-99.08%. The survival rate of tilapia is high, the feed conversion ratio is medium and growth is low. The high environmental temperature and the decrease in water quality due to the absence of water changes and aeration are suspected of causing the low growth of fish. Therefore, further research with water change and aeration experiments and the use of other species of fish is needed to follow up the results of this study.
Restoration of degraded lands for carbon stock enhancement and climate change mitigation: the case of Rebu watershed, Woliso Woreda, Southwest Shoa, Ethiopia Diriba Megersa Soboka; Fantaw Yimer
Journal of Degraded and Mining Lands Management Vol 9, No 2 (2022)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2022.092.3387

Abstract

This study was conducted to estimate carbon stock enhancement and climate change mitigation potential of restoration effort in Rebu Watershed, Woliso Woreda, Ethiopia. Two restored lands of thirteen years old were randomly selected from two kebeles. Biomass and soil data were collected systematically from nested plots. Mensuration of woody species, soil, and grass/litter samples was collected from the subplots of the nested plots. A total of 72 composite soil samples were collected. The results showed the positive impact of restoration activity on enhancing biomass and soil organic carbon stocks. The restored land ecosystem had shown higher carbon stock of (138.51 ± 27.34 t/ha) than the adjacent unrestored land ecosystem (101.43 ± 21.25 t/ha), which confirmed the potential of restoration in enhancing the carbon stock and mitigating climate change. Hence, the restored land use type has been stored about 8.37 t/ha of carbon dioxide equivalent (CO2e) in biomasses. The restored land use type has mitigated climate change (absorb CO2) by 7.7 times than the adjacent unrestored land use type in this study. The significant values in restored land use types were due to the enhanced vegetation and land cover, which contributed to the biomass and soil organic carbon accumulation. Moreover, the lower values in unrestored land use type were due to the continuous degradation and disturbance from livestock and human beings. Therefore, the result of this study showed that protecting the degraded lands from any disturbance could enhance the carbon stocks of the ecosystem and mitigate the carbon emission rate.

Page 1 of 2 | Total Record : 19