cover
Contact Name
Agung Setia Budi
Contact Email
agungsetiabudi@ub.ac.id
Phone
+62341-577911
Journal Mail Official
jtiik@ub.ac.id
Editorial Address
Fakultas Ilmu Komputer Universitas Brawijaya Gedung F FILKOM Lt. 8, Ruang BPJ Jalan Veteran No. 8 Malang Indonesia - 65145
Location
Kota malang,
Jawa timur
INDONESIA
Jurnal Teknologi Informasi dan Ilmu Komputer
Published by Universitas Brawijaya
ISSN : 23557699     EISSN : 25286579     DOI : http://dx.doi.org/10.25126/jtiik
Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) merupakan jurnal nasional yang diterbitkan oleh Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya (UB), Malang sejak tahun 2014. JTIIK memuat artikel hasil-hasil penelitian di bidang Teknologi Informasi dan Ilmu Komputer. JTIIK berkomitmen untuk menjadi jurnal nasional terbaik dengan mempublikasikan artikel berbahasa Indonesia yang berkualitas dan menjadi rujukan utama para peneliti. JTIIK di akreditasi oleh Kementerian Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia Nomor: 36/E/KPT/2019 yang berlaku sampai dengan Volume 11 Nomor 2 Tahun 2024.
Articles 3 Documents
Search results for , issue " Vol 2, No 2 (2015)" : 3 Documents clear
Prediksi Tinggi Muka Air (TMA) Untuk Deteksi Dini Bencana Banjir Menggunakan SVR-TVIWPSO Soebroto, Arief Andy; Cholissodin, Imam; Wihandika, Randy Cahya; Frestantiya, Maria Tenika; Arief, Ziya El
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2, No 2 (2015)
Publisher : Fakultas Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1302.981 KB)

Abstract

Abstrak Banjir merupakan salah satu jenis bencana alam yang tidak dapat diprediksi kedatangannya, salah satu penyebabnya adalah adanya hujan yang terus – menerus(dari peristiwa alam). Faktor penyebab banjir dari segi meteorologi yaitu curah hujan yang tinggi dan air laut yang sedang pasang sehingga mengakibatkan tinggi permukaan air meningkat. Analisis terhadap data curah hujan serta tinggi permukaan air setiap periodenya dirasa masih belum dapat menyelesaikan permasalahan yang ada. Oleh karena itu, pada penelitian ini diusulkan teknik integrasi metode Time Variant Inertia Weight Particle Swarm Optimization(TVIWPSO) dan Support Vector Regression(SVR). Implementasi memadukan metode Regresi yaitu SVR untuk forecasting TMA, sedangkan TVIWPSO digunakan untuk mengoptimalisasi parameter – parameter yang digunakan di dalam SVR untuk memperoleh kinerja yang maksimal dan hasil yang akurat. Harapannya sistem ini akan dapat membantu mengatasi permasalahan untuk pendeteksian dini bencana banjir karena faktor cuaca yang tidak menentu. Hasil pengujian yang didapat dari 10 data bulanan yang berbeda menunjukkan bahwa didapatkan nilai error terkecil sebesar 0.00755 dengan menggunakan Mean Absolute Error untuk data Juni 2007 dengan menggunakan integrasi metode SVR-TVIWPSO. Kata Kunci : Support Vector Regression, Tinggi Muka Air, Time Variant Inertia Weight Particle Swarm Optimization. Abstract Flood is one type of natural disaster that can not be predicted its arrival, one reason is the rain that constantly occurs (from natural events). Factors that cause flooding in terms of meteorology are high rainfall and sea water was high, resulting in high water level increases. Analysis of rainfall data and water level in each period it is still not able to solve existing problems. Therefore, in this study the method proposed integration techniques Time Variant Inertia Weight Particle Swarm Optimization (TVIWPSO) and Support Vector Regression (SVR). Implementation combines regression method for forecasting TMA is SVR, while TVIWPSO used to optimize parameters that used in the SVR to obtain maximum performance and accurate results. Hope this system will be able to help solve the problems for the early detection of floods due to erratic weather. The result of forecasting experiment in water level forecasting from 10 monthly different data show that the smallest error rate is amount to 0.00755 using Mean Absolute Error for June 2007 with the integration method SVR-TVIWPSO. Keywords: Support Vector Regression, water level, Time Variant Inertia Weight Particle Swarm Optimization.
Pengklasifikasian Dokumen Berbahasa Indonesia Dengan Pengindeksan Berbasis LSI Ridok, Achmad; ., Indriati
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2, No 2 (2015)
Publisher : Fakultas Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (911.531 KB)

Abstract

AbstrakKlasifikasi dokumen teks bertujuan untuk menentukan kategori suatu dokumen berdasarkan kesamaannya dengan kumpulan dokumen yang telah berlabel sebelumnya. Namun demikian kebanyakan metode klasifikasi yang ada saat ini dilakukan berdasarkan kata-kata kunci atau kata-kata yang dianggap penting dengan mengasumsikan masing-masing merepresentasikan konsep yang unik. Padahal pada kenyataanya beberapa kata yang mempunyai makna atau semantik sama seharusnya diwakili satu kata unik. Pada penelitian ini pendekatan berbasis LSI (Latent Semantic Indexing) digunakan pada KNN untuk mengklasifikasi dokumen berbahasa Indonesia. Pembobotan term dari dokumen-dokumen latih maupun uji menggunakan tf-idf,  yang direpresentasikan masing-masing dalam matrik term-dokumen A dan B. Selanjutnya matrik A didekomposisi menggunakan SVD untuk mendapatkan matrik U dan V yang tereduksi dengan k-rank. Kedua matrik U dan V digunakan untuk mereduksi B sebagai representasi dokumen uji.  Evaluasi kinerja sistem terbaik berdasarkan hasil  diperoleh pada klasifikasi KNN berbasis LSI tanpa stemming dengan threshould 2. Akan tetapi evaluasi kinerja terbaik berdasarkan waktu dicapai ketika KNN LSI dengan stemming pada threshould 5. Kinerja KNN berbasis LSI secara signifikan jauh lebih baik dibandingkan dengan KNN biasa baik dari sisi hasil maupun waktu.Kata kunci: KNN, LSI, K-Rank, SVD, Klasifikasi dokumen AbstractClassification of text documents aimed to determine the category of a document based on its similarity to set of documents which have been previously labeled. However, most existing methods of classification were conducted based on key words or words that are considered important by assuming each representing a unique concept. Whereas in fact some of the words that have the same meaning or semantics should be represented as a unique word. In this research LSI -based approach  used on KNN to classify documents in Indonesian language. Weighting the terms of the training documents or testing using tf-idf, which represented respectively in term-document matrix A and B. Furthermore, the matrix A is decomposed using SVD to obtain matrices U and V are reduced by k-rank. Both matrices U and V are used to reduce B as a representation of test documents. The best system performance evaluation based on the results obtained LSI-based in the KNN classification without stemming with threshould 2. However, the best performance evaluation based on the time achieved when KNN LSI with stemming the KNN with threshould 5. Performance-based LSI is significantly much better than the tradisional KNN in term both the outcome and timing.Keywords: KNN, LSI, K-Rank, SVD, Documents classification
Uji Performansi Ensemble Kalman Filter Untuk Mengurangi Noise Pengukuran Sensor Pada Robot Prasetio, Barlian Henryranu; Suharsono, Aswin
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 2, No 2 (2015)
Publisher : Fakultas Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (854.75 KB)

Abstract

AbstrakDalam penelitian ini diimplementasikan sebuah teknik robot bergerak yang berkaitan dengan kesetimbangan pada media tidak stabil. Tujuannya adalah merancang dan mengimplemntasikan sebuah sistem control diskrit digital yang  memberikan stabilitas yang diperlukan. Kontrol PID dan Algoritma filter Kalman  menjadi implementasi pengujian ideal model robot ini. Kedua algoritma tersebut  mampu meningkatkan performa control pada sistem. Penelitian ini menguji kinerja sistem control PID dan Algoritma filter Kalman. Uji software dilakukan untuk mengumpulkan hasil kinerja kedua Algoritma kontroler PID dan Filter Kalman. Kinerja sistem kontrol secara langsung tergantung pada Algoritma filter Kalman dan parameter masukan controller PID. Penelitian ini menggunakan EnKF dan PID controller sebagai algoritma penyeimbang robot. Dilakukan tunning manual pada kovarian filter. Percobaan dilakukan dengan metode trial and error dengan mengubah-ubah matrik kovarian noise proses. Overshoot sistem bisa dikurangi dengan cara mengatur matrik kovarian noise proses. Dari hasil percobaan sistem optimal pada Q_accelerometer : 0.001, Q_gyroscope        : 0.05, R_pengukuran         : 0.03,  P = 1790.005, I = 0.129 dan D = 96.881.Kata kunci: Ensemble Kalman, Kontroler PID, Performansi, RobotAbstractOne technique that is commonly used for mobile robots is an inverted pendulum based model. This research has been implementing a mobile robot technique in an unstable environment. The goal is to design and implementing a discrete digital control system that will provide robot stability. The PID controller algorithm and Ensemble Kalman filter (EnKF) implementation would be an ideal test model of this robot. Both of these algorithms are able to improve the performance of control systems. This robot already tested the performance of the PID control system and the EnKF algorithm. The performance of the PID controller algorithm and EnKF is tested by software. The Control system performance is directly dependent on the EnKF algorithm and input parameters of PID controller. Research uses EnKF algorithm and PID controller as a balancing robot. The covariance filter tuned by manually. Experiments carried out by the method of trial and error by varying the process noise covariance matrix. The system overshoot can be reduced by processing noise covariance matrix. The experiment results showed system optimal on Q_accelerometer: 0001, Q_gyroscope: 0.05 R_measurement: 12:03, P = 1790,005, I = 0.129 and D = 96 881.Keywords: Ensemble Kalman, Kontroler PID, Performance, Robots

Page 1 of 1 | Total Record : 3


Filter by Year

2015 2015


Filter By Issues
All Issue Vol 12 No 5: Oktober 2025 Vol 12 No 4: Agustus 2025 Vol 12 No 3: Juni 2025 Vol 12 No 2: April 2025 Vol 12 No 1: Februari 2025 Vol 11 No 6: Desember 2024 Vol 11 No 5: Oktober 2024 Vol 11 No 4: Agustus 2024 Vol 11 No 3: Juni 2024 Vol 11 No 2: April 2024 Vol 11 No 1: Februari 2024 Vol 10 No 6: Desember 2023 Vol 10 No 5: Oktober 2023 Vol 10 No 4: Agustus 2023 Vol 10 No 3: Juni 2023 Vol 10 No 2: April 2023 Vol 10 No 1: Februari 2023 Vol 9 No 7: Spesial Issue Seminar Nasional Teknologi dan Rekayasa Informasi (SENTRIN) 2022 Vol 9 No 6: Desember 2022 Vol 9 No 5: Oktober 2022 Vol 9 No 4: Agustus 2022 Vol 9 No 3: Juni 2022 Vol 9 No 2: April 2022 Vol 9 No 1: Februari 2022 Vol 8 No 6: Desember 2021 Vol 8 No 5: Oktober 2021 Vol 8 No 4: Agustus 2021 Vol 8 No 3: Juni 2021 Vol 8 No 2: April 2021 Vol 8 No 1: Februari 2021 Vol 7 No 6: Desember 2020 Vol 7 No 5: Oktober 2020 Vol 7 No 4: Agustus 2020 Vol 7 No 3: Juni 2020 Vol 7 No 2: April 2020 Vol 7 No 1: Februari 2020 Vol 6 No 6: Desember 2019 Vol 6 No 5: Oktober 2019 Vol 6 No 4: Agustus 2019 Vol 6 No 3: Juni 2019 Vol 6 No 2: April 2019 Vol 6 No 1: Februari 2019 Vol 5 No 6: Desember 2018 Vol 5 No 5: Oktober 2018 Vol 5 No 4: Agustus 2018 Vol 5 No 3: Juni 2018 Vol 5 No 2: April 2018 Vol 5 No 1: Februari 2018 Vol 4 No 4: Desember 2017 Vol 4 No 3: September 2017 Vol 4 No 2: Juni 2017 Vol 4 No 1: Maret 2017 Vol 3 No 4: Desember 2016 Vol 3 No 3: September 2016 Vol 3 No 2: Juni 2016 Vol 3 No 1: Maret 2016 Vol 2, No 2 (2015) Vol 2 No 2: Oktober 2015 Vol 2, No 1 (2015) Vol 2 No 1: April 2015 Vol 1, No 2 (2014) Vol 1 No 2: Oktober 2014 Vol 1, No 1 (2014) Vol 1 No 1: April 2014 More Issue