cover
Contact Name
Sandri Erfani, S.Si, M.Eng.
Contact Email
sandri.erfani@eng.unila.ac.id
Phone
+6282350155362
Journal Mail Official
jge.tgu@eng.unila.ac.id
Editorial Address
Geophysical Engineering Department Engineering Faculty Universitas Lampung, Prof. Dr. Sumantri Brojonegoro Street No 1, Rajabasa District, Bandar Lampung, Indonesia 35145
Location
Kota bandar lampung,
Lampung
INDONESIA
JGE (Jurnal Geofisika Eksplorasi)
Published by Universitas Lampung
ISSN : 23561599     EISSN : 26856182     DOI : https://doi.org/10.23960/jge
Core Subject : Science,
Jurnal Geofisika Eksplorasi adalah jurnal yang diterbitkan oleh Jurusan Teknik Geofisika Fakultas Teknik Universitas Lampung. Jurnal ini diperuntukkan sebagai sarana untuk publikasi hasil penelitian, artikel review dari peneliti-peneliti di bidang Geofisika secara luas mulai dari topik-topik teoritik dan fundamental sampai dengan topik-topik terapandi berbagai bidang. Jurnal ini terbit tiga kali dalam setahun (Maret, Juli dan November), Volume pertama terbit pada tahun 2013 dengan nama Jurnal Geofisika Eksplorasi (JGE).
Articles 216 Documents
Introduction and Table of Content JGE Vol 5 No 2 July 2019 Editor JGE
Jurnal Geofisika Eksplorasi Vol 5, No 2 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i2.54

Abstract

xxx
PENGHILANGAN SWELL NOISE DAN LINIER NOISE PADA DATA SEISMIK 2D MARINE HIGH RESOLUTION PADA LINTASAN “AF” MENGGUNAKAN METODE SWNA, F-K FILTER DAN TAU-P TRANSFORM Achmad Subari; Syamsurijal Rasimeng; Nando Liven Konstanta
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.3

Abstract

Research have been done about noise removal caused by environment (swell noise) and linear noise on high frequency 2D seismic data on line “AF” using swell noise attenuation (SWNA) method, f-k filter and tau-p transformation. Based on obtained result, swell noise succeed removed from data using velocity limited filter that is 1000 m/s on frequency 25 Hz applied to swell noise attenuation process. Applied SWNA data, then created input f-k filter process. In f-k filter process, used polygon design having a minimum frequency limit around 5 Hz maximum high frequency around 450 Hz. The results f-k filter giving a good output with linear noise removal to time 1500 ms. F-k filter output obtained, then processed again using tau-p transformation method. Application of tau-p transformation transformed data into (τ-p) domain. Transformed data on (τ-p) domain, linear noise made on moveout 600 ms. Then the data muted using surgical mute. Based on obtained result, tau-p result can removing linear noise on data. Linear noise removed dominating on time 1500 ms-2500 ms. That matter caused by linear noise on time 0-1500 ms succeed removed using previous process. After the method succesfully applied , data processing continued doing the stack and migration process. Applied migration is postack kirchoff time migration, migration do with migration angel around 300 and aperture around 600 m.
PEMANTAUAN PROSES INJEKSI AIR PADA LAPANGAN “SMR” CEKUNGAN SUMATERA TENGAH BERDASARKAN DATA ANOMALI TIME-LAPSE MICROGRAVITY Ahmad Zaenudin; Dian Pratiwi; Agung Wiyono
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.10

Abstract

There had been done a regional research about monitoring of injection process in "SMR" field of Central Sumatera Basin using microgravity method. The time-lapse microgravity method is the development of the gravity method (x, y, z) by adding the fourth dimension of time (t). Monitoring is carried out on production fields that have performed EOR (Enchanced Oil Recovery) ie the process of injecting water into the reservoir to push and drain the remnants of oil in the pores of the reservoir rock to the production well. The microgravity data processing is done by finding the difference between observed gravity values between the first and the second measurements, then performing the spectral analysis to separate the anomaly at reservoir depth and noise. The time-lapse microgravity anomaly has a value of -132.28 μGal to 54.89 μGal. Positive anomalies are related to the injection process, whereas the negative anomalies are related to the production process in the study area. Filtering analysis shows that there are two zones of fluid dynamics, which is due to the process of surface water dynamics (groundwater above reservoir) and that occurs in the reservoir. Fluid reduction zones occur in areas with more production wells than injection wells. Density reduction occurs in the reservoir layer at a depth of 600 m to 1000 m with a maximum reduction value of -3.1x10-3 gr / cm3. The gravity time-lapse inversion model shows the existence of several injection wells that are less effective and therefore need to be stopped injecting.
Foreword July 2021 Editor JGE
Jurnal Geofisika Eksplorasi Vol 7, No 2 (2021)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v7i2.151

Abstract

Foreword July 2021
PEMODELAN DAN ANALISA STRUKTUR BAWAH PERMUKAAN DAERAH PROSPEK PANASBUMI KEPAHIANG BERDASARKAN METODE GAYABERAT Roy Bryanson Sihombing; Rustadi Rustadi
Jurnal Geofisika Eksplorasi Vol 4, No 2 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i2.14

Abstract

Research has been conducted in Kepahiang area using gravity data with the aim of identify faults based on analysis of the Second Vertical Derivative (SVD) and interpreting structure sub-surface of the based on 3D inverse modelling from Bouguer anomaly and residual anomaly. The research area have an Bouguer anomaly between 38 mGal - 74 mGal, where the high Bouguer anomaly value has a value range of 63,2 mGal - 74 mGal located in the southwest direction of the research area. Whereas the low Bouguer anomaly value has a range of values 38 mGal - 47 mGal located in the north of the research area. To know the existence of fault structure in research area, conducted filtering Second Vertical Derivative (SVD) on the map Bouguer anomaly, regional and residual. The structure faulting is shown with contour of zero and between the contours of high and low. From the analysis of SVD complete anomaly Bouguer and SVD residual anomaly there are 8 (eight) faulting, while from SVD regional anomaly there are 4 (four) fault. 3D inversion modeling of the residual anomaly was done to prove the existence of the fault analyzed based on filtering Second Vertical Derivative (SVD). Based on the results of inversion 3D residual anomaly been gained one (1) reservoir in a northern direction research area and two (2) in the direction of west the research area by a contrast the density of -0,0719356 gr/cc until -0,236053 gr/cc with a depth of 0 meters up to 4.705 meters.
Front Cover JGE Vol 4 No 2 2018 Editor JGE
Jurnal Geofisika Eksplorasi Vol 4, No 2 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i2.48

Abstract

xxx
3D DATA GRAVITY MODELING FOR IDENTIFICATION OF THE FORMATION STRUCTURE OF THE HYDROCARBON BASIN IN THE BAJUBANG REGION, JAMBI PROVINCE Ira Kusuma Dewi; Fitria Puspitasari; Nasri M Z; Agustyadi Martha
Jurnal Geofisika Eksplorasi Vol 6, No 3 (2020)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v6i3.103

Abstract

Jambi is an area that has natural resources in the form of petroleum, one of which is the Bajubang region. Bajubang is located in the Jambi Sub Basin where ripe hydrocarbons are visible in the Talang Akar Formation. Petroleum exploration continues to run out of oil reserves. To find the presence of a sedimentary basin that has stopped, it can be done by measuring the gravity method. The basic concept of this method is to measure the geographical variation of an area on the earth's surface and corrected through the prevailing measurements or prices. The purpose of this research is to determine the geological structure pattern that causes the formation of sub-basins that indicate the presence of hydrocarbons and describe the subsurface conditions using forward modeling and backward modeling. Based on the modeling results found as many as 7 sub basins sediment. The height and fault structures are identified in the subsurface model. Based on the regional anomaly map shows the presence between the basin and the elevation. The fault structure, anticline and sub-basins are found which are expected to produce hydrocarbons.
APLIKASI METODE GEOLISTRIK RESISTIVITAS KONFIGURASI WENNER- SCHLUMBERGER UNTUK MENGIDENTIFIKASI LITOLOGI BATUAN BAWAH PERMUKAAN DAN FLUIDA PANAS BUMI WAY RATAI DI AREA MANIFESTASI PADOK DI KECAMATAN PADANG CERMIN KABUPATEN PESAWARAN PROVINSI LAMPUNG Wilyan Pratama; Rustadi Rustadi
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.21

Abstract

Research area is located in Padang Cermin Sun-District, Pesawaran Regency, Lampung Province. Manifestation in research area is hot water pool with surface temperatures reach 900C. Data acquisition has been done by Wenner-Schlumberger configuration with 5 acquisition line. Line 1, line 4 and line 5 have 280 meters length. Line 2 have 240 meters length and line 3 have 320 meters length with a spacing of each electrodes in each lines is every 5 meters. The objective of this research are (1)examining the geochemical contaminant and fluid types, (2)identifies the geothermal fluid based on 2D and 3D resistivity data analysis, also (3)identifies the layer of rock in Padok manifestation area based on 2D and 3D subsurface resistivity section. Subsurface lithology in research area generally divides into 4 parts. Which is hot water fluid with mean resistivity value between 1 Ωm into 3 Ωm and based on geochemistry data the fluid type is chloride water; surface sediment with resistivity value between 6 Ωm into 50 Ωm and identified as swamp sediment and alluvium sediment divides into gravels, pebbles, sands, clay and peat; Gravels, pebbles, sands, clay and peat with resistivity value between 50 Ωm into 100 Ωm; and igneous rock (andesite-basalt) with resistivity value more than 100 Ωm.
PREDIKSI POROSITAS MENGGUNAKAN METODE NEURAL NETWORK PADA LAPANGAN OZZA, CEKUNGAN SUMATRA TENGAH Ozza Dinata; Bagus Sapto Mulyanto; Resha Ramadian; Dhimas Arief R
Jurnal Geofisika Eksplorasi Vol 6, No 1 (2020)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v6i1.63

Abstract

Information from geological structures that are considered to contain hydrocarbons may not necessarily contain economical hydrocarbons, so additional analysis is needed to determine the position of new wells. Seismic and log methods can be used to determine areas considered prospective for oil and gas exploration. Seismic analysis method developed to be able to integrate seismic data and log data is a neural network. Neural network is a data processing to get a non-linear approach of the statistical relationship of the input data to the output data, then distributed to all seismic volumes. The results of the study of sand reservoir characteristics in the Ozza Field have a porosity value of more than or equal to 20%, and for shale it has a porosity value of less than 20%. The correlation between the original porosity value and predictive porosity is that the higher the porosity value in the original log the higher the value of the neural network porosity, and vice versa. The porosity distribution map in the prospect area has a higher porosity value than the surrounding area. The prospect zone for new exploration is in the southwest area of the study area.
PENDUGAAN PATAHAN DAERAH “Y” BERDASARKAN ANOMALI GAYABERAT DENGAN ANALISIS DERIVATIVE Yasrifa Fitri Aufia; Karyanto Karyanto; Rustadi Rustadi
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.24

Abstract

The research area "Y" is an area of gold mineralization with low sulfidation epithermal type deposit. The existence of this type of mineralization on the path marked by the presence of mineral deposits, which form the quartz veined below the surface of the deposited within the structure of the fault. In this study, analysis of gravity data using derivatives analysis, i.e. First Horizontal Derivative (FHD) to determine the boundary fault structure and Second Vertical Derivative (SVD) to determine the type of fault. The existence of the fault structure integrated with subsurface modeling results in two-dimensional and three-dimensional. The results showed three line slice made in the area of research, identified structure of down faults (normal) trending northeast - south on slice 1 with an estimated dip (slope) is 22° and expected of strike on this fault is N 158° W and thrust fault structure trending northwest - south on slice 2 also slice 3 with an estimated dip (slope) is 22° and expected of strike on this fault is N 158° E. The results of the modeling of two-dimensional and three-dimensional show fracture structure is at the density of 2 g/cc – 2,67 g/cc in the depth of around 100 m - 250 m that consists of sedimentary rocks (clay and sandstone) with a density of 2,2 g/cc – 2,3 g/cc at the age of Tertiary Pliocene, tuff rock with a density of 2,4 g/cc – 2,5 g/cc at the age of Early Miocene and bedrock (basement) in andesite form with a density of 2,67 g/cc.

Page 5 of 22 | Total Record : 216