cover
Contact Name
Sandri Erfani, S.Si, M.Eng.
Contact Email
sandri.erfani@eng.unila.ac.id
Phone
+6282350155362
Journal Mail Official
jge.tgu@eng.unila.ac.id
Editorial Address
Geophysical Engineering Department Engineering Faculty Universitas Lampung, Prof. Dr. Sumantri Brojonegoro Street No 1, Rajabasa District, Bandar Lampung, Indonesia 35145
Location
Kota bandar lampung,
Lampung
INDONESIA
JGE (Jurnal Geofisika Eksplorasi)
Published by Universitas Lampung
ISSN : 23561599     EISSN : 26856182     DOI : https://doi.org/10.23960/jge
Core Subject : Science,
Jurnal Geofisika Eksplorasi adalah jurnal yang diterbitkan oleh Jurusan Teknik Geofisika Fakultas Teknik Universitas Lampung. Jurnal ini diperuntukkan sebagai sarana untuk publikasi hasil penelitian, artikel review dari peneliti-peneliti di bidang Geofisika secara luas mulai dari topik-topik teoritik dan fundamental sampai dengan topik-topik terapandi berbagai bidang. Jurnal ini terbit tiga kali dalam setahun (Maret, Juli dan November), Volume pertama terbit pada tahun 2013 dengan nama Jurnal Geofisika Eksplorasi (JGE).
Articles 216 Documents
IDENTIFIKASI BATAS SUB-CEKUNGAN HIDROKARBON MENGGUNAKAN ANALISIS SHD (SECOND HORIZONTAL DERIVATIVE) DAN SVD (SECOND VERTICAL DERIVATIVE) BERDASARKAN KORELASI DATA GAYABERAT DAN SEISMIK Wuri Andari; Karyanto Karyanto; Riski Kurniawan
Jurnal Geofisika Eksplorasi Vol 5, No 1 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i1.23

Abstract

Gravity method generally can read the difference of rock density to identify subsurface structures. This research was conducted in Riau area with the aim of knowing fault and subsurface structure, and determining sub-basin boundary. Data processing was done by using spectral analysis, SHD and SVD analysis, and 2D modeling then later correlated with seismic section to find out the subsurface structure of research area. The results showed that the bouguer anomaly value had a range of values between 5.6 mGal to 33.2 mGal with a surface density of 1.95 g / cc. High anomaly were in the eastern region and low anomaly were in the NW - SE trending region. 6 low anomalies indicated as a sub-basin pattern were separated by a relatively high altitude area of North West Southeast. The average residual anomaly depth was about 2.3 km. Based on the 2D subsurface modeling results, there was layer structure from the youngest to eldest that were alluvial deposits, Petani Formation, Sihapas group and granitic rock as the base rock. The projected subsurface section to surface showed 5 sub-basins with basin width 4-12 km located in the sub-basin and fault indication area.
OPTIMALISASI DATA LANDSAT 8 UNTUK PEMETAAN DAERAH RAWAN BANJIR DENGAN NDVI dan NDWI ( Studi Kasus : Kota Bengkulu ) Aan Erlansari; Boko Susilo; Franky Hernoza
Jurnal Geofisika Eksplorasi Vol 6, No 1 (2020)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v6i1.60

Abstract

Indonesia is classified as a tropical region with rainfall data ranging from medium to high. This has become one of the causes of frequent flooding. Bengkulu which is one of the provinces in Indonesia, has a topography that is at an elevation of 0-16 meters above sea level with 70% flat topography and 30% small hilly. Swamp area dominates the lowlands so that it cannot optimally absorb water into the soil. This study identifies areas with potential flooding using data obtained through Landsat 8 and processes them using the NDVI and NDWI methods. NDVI detected and classified a map into five classifications; dry land with red colour, scarce vegetation with yellow pigment, sparse vegetation with soft green colour, solid vegetation with a dark green colour. Meanwhile, NDWI classified into 3 categories; medium wetness with a brown colour, dry land with beige colour and high wet area with a blue colour.
INVERSI MIKROTREMOR UNTUK PROFILING KECEPATAN GELOMBANG GESER (Vs) DAN MIKOROZONASI KABUPATEN BANDUNG Andina Zuhaera; Suharno Suharno; Bagus Sapto Mulyatno
Jurnal Geofisika Eksplorasi Vol 5, No 2 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i2.25

Abstract

Bandung Regency is a highland area with a slope between 0 - 8%, 8-15% to above 45%. The district is located at an altitude of 768 m above sea level with the northern region higher than the south. The purpose of this study was to determine the distribution of Vs30 waves and determine the impact of damage due to wave amplification (amplification). To minimize the impact of this earthquake identification can be done including a survey to map soil characteristics in response to earthquake shocks using the seismic Horizontal to Vertical Spectral Ratio (HVSR) method. Based on the results of the study, the distribution of the dominant frequency values, Bandung Regency was identified as having hard and soft rock soil and having solid clay with a thickness of tens of meters. The amplification value in Bandung Regency has a value (0 Ao 6) which can be categorized that Bandung Regency has a small impact on the earthquake. The difference between the results of inversion processing and HVSR is due to the assumption that the layer inversion is heterogeneous and the HVSR layer is homogeneous.
ANALISIS ZONA BAHAYA GEMPABUMI BERDASARKAN METODE DETERMINISTIK DAN PENDEKATAN GEOMORFOLOGI KOTA PADANG SUMATERA BARAT Azis Riyanti; Syamsurijal Rasimeng
Jurnal Geofisika Eksplorasi Vol 5, No 2 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i2.26

Abstract

Research on earthquake hazard analysis based on deterministic methods and the geomorphology approach of Padang City has been carried out to determine the maximum soil acceleration (PGA) and amplification of the source of the Suliti faults and Earthquake Subduction and determine soil classes based on shear waves (Vs30). The PGA value, several attenuation equations are used to find the magnitude of the shock produced when a shallow earthquake occurs. For the source of fault earthquakes, the attenuation equations used are the equivalent of Boore-Atkinson, Campbell-Bozorgnia, and Chiou-Young. While the attenuation equations used to obtain PGA values from subduction earthquake sources are Atkinson-Boore, Youngs, and Zhao. PGA value of earthquake source Subduction in bedrock 0.0374 g. While the PGA value on the surface is 0.0769 g. Whereas the PGA value in the fault source (Hard Fault) in bedrock ranged from 0.0376 g, while the PGA value on the surface ranged from 0.0573 g. Areas that have a severe impact if an earthquake originates from a fault are Koto Tengah District, West Padang Subdistrict, and North Padang Subdistrict with the highest amplification value of 1.7690 ( 9 times) which indicates that the magnification of the area is high. Whereas in the case of an earthquake with an earthquake source subduction area which is very vulnerable is West Padang District, Koto Tengah District, Padang Utara District with an amplification value of 2.0607 ( 9 times).
Foreword July 2020 Editor JGE
Jurnal Geofisika Eksplorasi Vol 6, No 2 (2020)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v6i2.82

Abstract

Foreword July 2020
Foreword November 2021 Editor JGE
Jurnal Geofisika Eksplorasi Vol 7, No 3 (2021)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v7i3.179

Abstract

Foreword November 2021
Studi Identifikasi Struktur Geologi Bawah Permukaan Untuk Mengetahui Sistem Sesar Berdasarkan Analisis First Horizontal Derivative (FHD), Second Vertical Derivative (SVD), Dan 2,5D Forward Modeling Di Daerah Manokwari Papua Barat Ahmad Zaenudin; Shiska Yulistina
Jurnal Geofisika Eksplorasi Vol 4, No 2 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i2.15

Abstract

In general, Manokwari has a geological structure that is in the form of a folding area found in the highlands of the mountains. Among the creases, there is a fault up and the fault down. In coastal or marine areas found many reefs and corals. The study of gravity was conducted in the Manokwari area of West Papua with the aim to know the subsurface geological structures based on FHD (First Horizontal Derivative), SVD (Second Vertical Derivative) and 2.5D Forward Modeling on the residual anomaly maps of the study area. The results showed that the research area has Bouguer Anomaly value ranged from 4 mGal to 96 mGal with the low anomaly at the left side of the research area lengthwise relatively in north-west to south-east direction, the middle-value anomaly spreads in the west-east area of research area, high anomaly scattered in the northern part of the research area. The results of the 2.5D subsurface modeling and the SVD and FHD analysis indicated the presence of a Thrust Fault on the C-C’ cross-section, on the B-B’ cross-section there is a Diorite Lembai intrusion with the density value is 2.75 gr/cc, whereas the A-A' cross-section which intersects with Sorong fault were not found any fault or rock intrusion based on observed gravity data of the research area.
Introduction and Table of Content JGE Vol 5 No 3 November 2019 Editor JGE
Jurnal Geofisika Eksplorasi Vol 5, No 3 (2019)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v5i3.56

Abstract

xxx
PEMETAAN MIKROZONASI DAERAH RAWAN GEMPABUMI MENGGUNAKAN METODE HVSR DAERAH PAINAN SUMATERA BARAT Asri Wulandari; Suharno Suharno; Rustadi Rustadi
Jurnal Geofisika Eksplorasi Vol 4, No 1 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i1.5

Abstract

Regional Painan, the distric of Pesisir Selatan, the province of west Sumatera is one of the areas with high risk disaster prone. This study aims attempts to maped the disaster prone area of the Painan region based on the dominant frequency value, Vs30, PGA and amplification and to know the value of ground movement from the area. By using the HVSR method (Horizontal to Vertical Spectra Ratio) expected to assist to zone the regions. Based on the research that has been done, it is known that the Painan area, West Sumatera, have values of dominant frequency between 0.6 to 12.07 Hz. As for the value Vs30 between 73.08 to 1449 m/s and the amplification values between 0.47 to 6.01. The PGA value for Painan region between 0.034 to 0.063 g. Based on the analysis that has been done by correlating the four zoning map, it is known that the area which has a high risk of earthquake disaster that is estimated to coastal areas. This is supported by the dominant low frequency value and the value Vs30 small and PGA of high value. The amplification value of this region is divided into four zones, areas that have amplification is very high being around the beach and composed by rock alluvial, the value of amplification of high contained in nearly all the regions Painan while amplification medium and low are the small area of Painan and the small area of Bungo Pasang Salido because based on the geological map of the area is composed of two types of rocks are alluvial and rock Painan Formations.
IDENTIFIKASI STRUKTUR BAWAH PERMUKAAN MENGGUNAKAN METODE MAGNETOTELLURIK 2D DI DAERAH CEKUNGAN BINTUNI SEBAGAI POTENSI HIDROKARBON Ririn Yulianti; Syamsurijal Rasimeng; Karyanto Karyanto; Hidayat Hidayat; Noor Muhammad Indragiri
Jurnal Geofisika Eksplorasi Vol 4, No 2 (2018)
Publisher : Engineering Faculty Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jge.v4i2.18

Abstract

Magnetotelluric research was done in hydrocarbon prospect area of Bintuni basin, West Papua province. The purpose of this research is to identificate hydrocarbon prospect in subsurface structure using 2D resistivity section. Data processing step for the research are; (i) Data transformation from time domain to frequency domain using Fourier transformation. (ii) Filtering process using Robust No Weight, Robust Rho Variance and Robust Ordinary Coherency. (iii) XPR selection and formatting data into EDI file. (iv) 2D resistivity section modeling using inversion. The result of this research based on 2D resistivity section in Klasafat formation have resistivity value about 1 – 20 Ωm. From 0 until 1000 meter below the surface the main lithology is claystone that identified as caprock. Kemblengan formation have resistivity value about 20 – 90 Ωm in 3500 meter under surface with main lithology lime-sandstone and identified as a reservoir. Tipuma formation have resistivity value about 0.62 – 2 Ωm in 8000 meter under surface with main lithology claystone. Kemun formation have resistivity value about 20 – 32 Ωm in 6000 meter under surface with main lithology sandstone and identified as a basement.

Page 7 of 22 | Total Record : 216