cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota surabaya,
Jawa timur
INDONESIA
Journal of Civil Engineering
ISSN : 20861206     EISSN : 25799029     DOI : -
Core Subject :
Journal of Civil Engineering merupakan jurnal bidang teknik sipil yang mengacu pada sistem standar internasional dalam pengelolaannya dengan tujuan utama memajukan bidang teknik sipil melalui publikasi ilmiah demi terwujudnya kemudahan mendapatkan ilmu dan informasi serta mendukung kemajuan teknologi.
Arjuna Subject : -
Articles 5 Documents
Search results for , issue "Vol 35, No 1 (2020)" : 5 Documents clear
Strut and tie model optimization for reinforced concrete deep beam using genetic algorithm Bambang Piscesa, PhD; Tavio Tavio
Journal of Civil Engineering Vol 35, No 1 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20861206.v35i1.7754

Abstract

This paper presents strut and tie model structural optimization of reinforced concrete deep beam using genetic algorithm. Genetic algorithm is used as the optimization platform as it does not require differentiation of the exact mathematical formulation to get the optimum solution. The force analysis is carried out using two-dimensional linear finite element method with truss element. The struts and ties design are based on ACI 318. One RC deep beam example is presented as an example. During optimization, there are two constraints which consisted of strength of the member alone and combination with deformation limit of the nodes. The stress ratio for both struts and ties are set to not exceed unity while the deformation was limited to 2.0 mm. From the optimization analysis, it can be concluded that genetic algorithm can be used to get the most optimum structural configuration which yield the most economical solution for design purposes. On the other hand, it is found out that optimizing only the strength alone can yield a more economical solution compared to the design references. However, if deformation constraint is added in the optimization parameters, larger deep beam depth is required to satisfy the deformation limits.
Strength reduction factor evaluation of the circular reinforced concrete column with varying eccentricity ratio (e/h) Wahyuniarsih Sutrisno; Mudji Irmawan; Dwi Prasetya
Journal of Civil Engineering Vol 35, No 1 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20861206.v35i1.7788

Abstract

This paper presents strength reduction factor evaluation of circular reinforced concrete column with varying eccentricity ratio (e/h) using the first-order-reliability-methods. The resistance properties of the reinforced concrete column is estimated using the monte-carlo simulation with random normally distributed material properties. Only dead and live load combination considered in the analysis. The parameters being investigated when evaluating the resistance of the reinforced concrete column are the concrete compressive strength, steel yield strength, coefficient of variation for both the concrete and steel materials, reinforced concrete column size, and the longitudinal reinforcement ratio. When evaluating the strength-reduction factor, the safety index values are 3.0, 3.5, and 4.0. From the analysis, it was found out that the strength reduction factor, for e/h higher than one and with safety index equal to 3.0, was equal to 0.9 which agrees well with the ACI 318 strength reduction factor for tension-controlled region. However, for e/h lower than one and safety index equal to 3.0, the strength reduction factor was equal to 0.6 which was lower than the ACI 318 strength reduction factor for compression-compression controlled region.
Kajian metode penentuan kekuatan momen retak tiang pancang spun pile Candra Irawan; I Gusti Putu Raka; Priyo Suprobo
Journal of Civil Engineering Vol 35, No 1 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20861206.v35i1.7790

Abstract

This paper describes the results of a study carried out experimentally on the determination of the moment strength of spun pile piles. The methods used are visual observation, load-displacement curve evaluation, and tensile strain analysis. The experimental results show that a load of data taken is a little late between 3 and 9 % compared to the results based on load-displacement curve. The crack load accuracy results from the load-deflection curve analysis were validated by the PC bar tensile strain reading. The deflection at crack read on the load-deflection curve is the same as the deflection at the start of the tensile strain jump on the PC bar.
Non-linear finite element analysis of reinforced concrete deep beam with web opening Ferry Alius; Bambang Piscesa; Faimun Faimun; Harun Alrasyid; Data Iranata
Journal of Civil Engineering Vol 35, No 1 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20861206.v35i1.7480

Abstract

The use of Reinforced Concrete (RC) deep beams in building may requires web openings or holes for electrical and mechanical utilities passage. This web opening will change the behavior of RC deep beam and may resulted in early cracks even at service load. Hence, it is important to use a suitable tool to predict the full response of RC deep beam with opening. For that purpose, nonlinear finite element method using 3D-NLFEA software package which utilize a plasticity-fracture model is used to predict the behavior of RC deep beam. One deep beam specimen available in the literature is investigated. To study the effect of using structured and unstructured mesh, as well as different element types on the load deflection curve, hexahedral and tetrahedral solid element was used. From the comparisons, it was observed that the crack pattern between two different meshes was not similar. Structured mesh often has straighter crack propagation compared to the unstructured mesh. The load deflection curve for both models are similar and both models were performed satisfactorily in predicting the peak load of the deep beam.
3D non-linear finite element analysis of concentrically loaded high strength reinforced concrete column with GFRP bar Adhi Dharma Prasetyo; Bambang Piscesa; Harun Al Rasyid; Dwi Prasetya
Journal of Civil Engineering Vol 35, No 1 (2020)
Publisher : Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j20861206.v35i1.7750

Abstract

The use of High Strength Concrete (HSC) material in Reinforced Concrete (RC) column has become widely used. HSC was found to be durable, strong in compression, but it has low ductility. This low ductility of HSC can be improved by providing confinement. However, for HSC with concrete strength higher than 70 MPa, additional clause for confinement in ACI 318-19 generates denser arrangement of transverse bars and eventually creates weak planes between the concrete core and the cover. These weak planes can trigger early cover spalling. To reduce the utilization of confining bars, high-strength Glass Fiber Reinforce Polymer (GFRP) bar can be used. However, the performance of GFRP bar varies significantly from their uniaxial behavior in tension or compression to the real performance when it is used as the main reinforcement. For that reason, this paper tries to investigate the behavior of HSC RC column with bars made of conventional steel rebar and with GFRP bars. Due to limited data on the strain gauge reading on the GFRP bars from the available test result, an inverse analysis is carried out to determine the best stress-strain curve for GFRP bars used as the main reinforcement. For that purpose, an inhouse finite element package called 3D-NLFEA is used. From the comparisons, it was found out that the peak load, softening behavior, and the concrete core enhancement prediction agrees well with the test result. From the inverse analysis, only 25% and 45% of the GFRP bar yield strength can be deployed when loaded under compression and tension, respectively.

Page 1 of 1 | Total Record : 5