cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
Jurnal Fourier
ISSN : -     EISSN : -     DOI : -
FOURIER adalah Jurnal Ilmiah bidang yang memadukan dan mengembangkan ilmu Matematika dan pembelajarannya yang diintegrasikan dan interkoneksikan dengan nilai-nilai keislaman terbit sejak tahun 2012 dengan frekuensi terbit 2 kali dalam setahun yang dengan bahasa utama (Bahasa Indonesia dan Bahasa Inggris) yang proses reviewernya sesuai dengan disiplin ilmunya (Analisis, Aljabar, Matematika Terapan, Statistika, dan Pendidikan Matematika).
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol. 2 No. 2 (2013)" : 6 Documents clear
Metode Akra-Bazzi Sebagai Generalisasi Metode Master Dalam Menyelesaikan Relasi Rekurensi Muchammad Abrori
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (323.889 KB) | DOI: 10.14421/fourier.2013.22.63-72

Abstract

Rekurensi relation is an equation that relates the elements of a sequence. One of the benefits of the rekurensi relation can be used to calculate the running time/finish of an algorithm. Some algorithms use approach devide-and-conquer in resolving a problem. Rekurensi relations with the approach of the devide and conquer can be solved by several methods. This research aims to know the Akra-Bazzi Method as an extension Method of the Master. This research began with the dissected the concept pertaining to the Relation Rekurensi, methods for resolving Relationship Rekurensi, and lastly about methods of AkraBazzi. Note that Akra-Bazzi Method can solve a rekurensi devide-and-conquer with shorter calculation.
Pewarnaan Simpul Dengan Algoritma Welch-Powell Pada Traffic Light Di Yogyakarta Ana Mardiatus Soimah; Noor Saif Muhammad Mussafi
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (505.299 KB) | DOI: 10.14421/fourier.2013.22.73-79

Abstract

Traffic congestion is a problem which is often found in big cities in Indonesia. This requires a range of solutions, one of them with the settings of the traffic light. Traffic light arrangement can be completed with graph theory. Part of graph theory a graph coloring is used. Staining graf three i.e. coloring is differentiated into a knot, staining the sides, and staining region. This research examines the arrangements about traffic light using colorization algorithm Welch knot with Powell. The intersection of Data represented in the graph, which is then solved by coloring the vertices, then look for the value of the effective duration of the time compared to a traffic light settings occur at several intersections in Yogyakarta. Completion of traffic light arrangement using staining nodes provide alternative solutions duration lit the red light and green light is more effective than the secondary data at several intersections in Yogyakarta.
Model Matematika Untuk Kontrol Campak Menggunakan Vaksinasi Maesaroh Ulfa; Sugiyanto Sugiyanto
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (347.188 KB) | DOI: 10.14421/fourier.2013.22.81-89

Abstract

Measles (also known as Rubeola, measles 9 day) is a highly contagious virus infection, characterized by fever, cough, conjunctiva (inflammation of the tissue lining of the eye) and skin rash. The disease is caused by infection of measles virus paramyxovirus cluster. It is a deadly disease. Vaccination is the most effective strategy to prevent the disease. It is generally given to children. This research aims to establish a model of the effect of measles vaccination, forming the point of equilibrium and analyze the stability, create a simulation model and interpret them, and to know the design to optimize the vaccination coverage required, so it can reduce the spread of this disease. This research was conducted by the method of literature study. It is expected to provide an overview of the mathematical model used to control measles vaccination with division of classes SEIR. The steps taken is identifying the problem, formulating assumptions to simplifying the model, making the transfer diagram, defining parameters, determining the equilibrium points and analyzing the stability, simulating the model, and forming the design to optimize the vaccination. Then from this research can be obtained free balance point of endemic and diseases and their stability. Based on the results obtained, the simulation is done by taking the data in Yogyakarta, and obtained vaccination coverage with two doses that can increase the herd immunity with lower vaccination coverage.
Penyelesaian Masalah Nilai Batas Persamaan Diferensial Mathieu–Hill Santosa Santosa; Muhammad Wakhid Musthofa; Malahayati Malahayati
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (655.98 KB) | DOI: 10.14421/fourier.2013.22.91-103

Abstract

Berbagai masalah fisis dan geometri yang melibatkan dua fungsi atau lebih peubah bebas sangat berkaitan dengan persamaan diferensial. Salah satu analisis fisis tersebut dapat dinyatakan dalam bentuk persamaan diferensial. Ilmuwan matematika yang bernama George W. Hill dan Mathieu meneliti tentang getaran pada pendulum gantung yang bisa dimodelkan dalam bentuk persamaan diferensial Mathieu-Hill. Persamaan diferensial Mathieu-Hill adalah persamaan diferensial orde dua yang didalam fungsi tersebut terdapat fungsi periodik. Persamaan diferensial Mathieu-Hill dapat diselesaikan dengan menggunakan metode aljabar matriks. Pada tahun 2005 sudah diteliti tentang solusi dari persamaan diferensial Mathieu-Hill. Penelitian ini menjelaskan tentang penyelesaian masalah nilai batas pada persamaan diferensial Mathieu Hill yang akan manghasilkan suatu solusi dalam bentuk persamaan periodik. Untuk lebih memahami penyelesaian masalah nilai batas pada persamaan diferensial Mathieu-Hill diberikan salah satu contoh aplikasinya dalam menghitung getaran pada mesin lokomotif kereta yang dimodelkan dalam bentuk persamaan diferensial Hill-Meissner.
Analisis Portofolio Optimal Saham Syariah Menggunakan Multi Index Models (Periode: 04 Januari 2010 – 1 Juli 2013) Mulat Arja’i; Mohammad Farhan Qudratullah
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (334.665 KB) | DOI: 10.14421/fourier.2013.22.105-111

Abstract

The portfolio is a combination or aggregation of two or more individual stock and concern for investors is to form the optimum portfolio and one of the ways that can be used are Multi-Index Models (MIM). This Model is a development of the Single Index Models (SIM), if on a SIM only consider one factor that affects the value of the stock, then return at MIM considers more than one factor. This study discusses the optimal portfolio analysis using Multi-Index Models with a case study on the stock of the Sharia Jakarta Islamic Index (JII) period 4 January 2010 – 1 July 2013 by using composite stock price index (IHSG), index Dow Jones Industrial Average (DJIA) and index the Hang Seng Index as a factor in MIM. The results of this research were obtained that the optimum portfolio is a portfolio that was created based on the stocks that had the highest positive return value, i.e. UNVR 41,40%, SMGR 40.66%, KLBF 11.01, and LPKR 6,93% with a value of expected return portfolio amounted to 2.55% and risk of a portfolio of 0,29%.
Aplikasi Persamaan Bessel Orde Nol Pada Persamaan Panas Dua Dimensi Annisa Eki Mulyati; Sugiyanto Sugiyanto
Jurnal Fourier Vol. 2 No. 2 (2013)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (468.216 KB) | DOI: 10.14421/fourier.2013.22.113-123

Abstract

Bessel differential equation is one of the applied equation in physics is about heat transfer. Application of modified Bessel function of order zero on heat transfer process of two-dimensional objects which can be modelled in the form of a two-order partial differential equations as follows, ..... With the obtained solutions of Bessel's differential equation application of circular fin, .... two-dimensional temperature stated on the point ..... against time t

Page 1 of 1 | Total Record : 6