cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota surabaya,
Jawa timur
INDONESIA
EMITTER International Journal of Engineering Technology
ISSN : 2355391x     EISSN : -     DOI : -
Core Subject : Science,
EMITTER International Journal of Engineering Technology is a BI-ANNUAL journal published by Politeknik Elektronika Negeri Surabaya (PENS). It aims to encourage initiatives, to share new ideas, and to publish high-quality articles in the field of engineering technology and available to everybody at no cost. It stimulates researchers to explore their ideas and enhance their innovations in the scientific publication on engineering technology. EMITTER International Journal of Engineering Technology primarily focuses on analyzing, applying, implementing and improving existing and emerging technologies and is aimed to the application of engineering principles and the implementation of technological advances for the benefit of humanity.
Arjuna Subject : -
Articles 436 Documents
Real Performance Evaluation On MQTT and COAP Protocol in Ubiquitous Network Robot Platform (UNRPF) for Disaster Multi-robot Communication Yamin, Muhammad Ikrar; Kuswadi, Son; Sukaridhoto, Sritrusta
EMITTER International Journal of Engineering Technology Vol 6, No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (808.632 KB) | DOI: 10.24003/emitter.v6i2.305

Abstract

Disaster multi-robot has a significant role in a disaster area to do many tasks like detection of fire, search and rescue of victims, etc. It needs to build good communication between the operator and multi-robot and among multi-robot themselves to perform their tasks quickly and efficiently. This relates with the queue message protocol system. In this research, we implemented the queue message protocol on mesh topology and integrated it on the robot platform. Recently, development of IoT (Internet of Things) Technology causes development of communication protocol. MQTT and CoAP are among the communication protocols used for IoT needs.  Both  protocols performance were compared when  used and implemented into disaster multi-robot. We also integrated MQTT protocol and robot  platform python based (UNR-PF). The result shows that MQTT protocol is easier to be  implemented on to disaster multi-robot platform (UNR-PF) on mesh topology than CoAP, and that data transfer rate of MQTT protocol has data transfer rate higher than CoAP.
Trusted Data Transmission Using Data Scrambling Security Method with Asymmetric Key Algorithm for Synchronization Saadah, Nihayatus; Astawa, I Gede Puja; Sudarsono, Amang
EMITTER International Journal of Engineering Technology Vol 6, No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (804.766 KB) | DOI: 10.24003/emitter.v6i2.267

Abstract

Security is a major concern of the internet world because the development of the Internet requires the security of data transmission. The security method helps us to store valuable information and send it over an insecure network so that it can not be read by anyone except the intended recipient. Security algorithm uses data randomization method. This method of data information randomization has a low computation time with a large number of bits when compared to other encryption algorithms. In general, the encryption algorithm is used to encrypt data information, but in this research the encryption algorithm is used for synchronization between the sender and the intended recipient. Number of bits on asymmetric key algorithm for synchronization are the 64-bits, 512-bits and 1024-bits. We will prove that security methods can secure data sent with low computational time with large number of bits. In the result will be shown the value of computing time with variable number of bits sent. When data are sent by 50 bytes, encryption time required 2 ms using 1024 bits for synchronization technique asymmetric key algorithm. 
Study on Thermoelectric Cooler Driven by Solar Energy in Medan City Sitorus, Tulus Burhanuddin; Lubis, Zulkifli; Ariani, Farida; Sembiring, Ferry
EMITTER International Journal of Engineering Technology Vol 6, No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1352.369 KB) | DOI: 10.24003/emitter.v6i2.303

Abstract

The primary purpose of this study is to investigate the performance of thermoelectric cooler driven by solar energy in Medan city, Indonesia. This cooler able to use in a remote area where electricity is still not available. The cooler could be used to store beverage that must be stored at low temperatures to maintain the freshness such as drink cup. The solar thermoelectric cooler is based on the principles of a thermoelectric module or Peltier effect to create a hot side and a cold side. The cold side of the thermoelectric module is utilized for cooling purposes to the cooling space. The heat from the hot side of the module is rejected to ambient surroundings by using heat sinks and fans. The solar thermoelectric cooler was experimentally tested for the cooling purpose. Experimental results showed that the solar thermoelectric cooler could reduce the temperature of the drink cup from 26oC to 15oC in approximately 40 min. The maximum COP of the cooling system during the experiment was calculated and found to be about 0.356. The effect of weather conditions on the COP value was about 85.90%.
Adaptive Modulation and Coding (AMC) around Building Environment for MS Communication at The Train Eska, Andrita Ceriana
EMITTER International Journal of Engineering Technology Vol 6, No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (502.415 KB) | DOI: 10.24003/emitter.v6i2.279

Abstract

This paper focused at communication systems when train moved. The communication propagation was influenced by building environment. The communication condition that used uplink direction. Mobile station was placed inside the train where moved with 500 km/hour velocity. The analysis was used consists of Doppler effect, atmospheric, and building environment. The variation communication frequency was used consists of 2.6 GHz, 5 GHz, and 10 GHz. Diffraction mechanism caused building was used single knife edge method. The result was showed SNR value from the communication frequency variation, distance comparison between LOS and NLOS, alteration adaptive modulation and coding (AMC), and coverage area percentage. Modulation and Coding Scheme (MCS) was used for AMC consists of QPSK, 16 QAM, and 64 QAM. Decreases of SNR value can be occured when communication distance for NLOS condition farther then LOS condition. That distance became increases because was obstructed with high building. Changeable of AMC value was caused propagation condition. The coverage area percentage when communication frequency that was used consists of 2.6 GHz, 5 GHz, and 10 GHz was obtained 88.4%, 88.4%, and 81.7%.
Classification Algorithms of Maternal Risk Detection For Preeclampsia With Hypertension During Pregnancy Using Particle Swarm Optimization Tahir, Muhlis; Badriyah, Tessy; Syarif, Iwan
EMITTER International Journal of Engineering Technology Vol 6, No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (565.13 KB) | DOI: 10.24003/emitter.v6i2.287

Abstract

Preeclampsia is a pregnancy abnormality that develops after 20 weeks of pregnancy characterized by hypertension and proteinuria.  The purpose of this research was to predict the risk of preeclampsia level in pregnant women during pregnancy process using Neural Network and Deep Learning algorithm, and compare the result of both algorithm. There are 17 parameters that taken from 1077 patient data in Haji General Hospital Surabaya and two hospitals in Makassar start on December 12th 2017 until February 12th 2018. We use particle swarm optimization (PSO) as the feature selection algorithm. This experiment shows that PSO can reduce the number of attributes from 17 to 7 attributes. Using LOO validation on the original data show that the result of Deep Learning has the accuracy of 95.12% and it give faster execution time by using the reduced dataset (eight-speed quicker than the original data performance). Beside that the accuracy of Deep Learning increased 0.56% become 95.68%. Generally, PSO gave the excellent result in the significantly lowering sum attribute as long as keep and improve method and precision although lowering computational period. Deep Learning enables end-to-end framework, and only need input and output without require for tweaking the attributes or features and does not require a long time and complex systems and understanding of the deep data on computing.
Comparison of Adaptive Ant Colony Optimization for Image Edge Detection of Leaves Bone Structure Liantoni, Febri; Perwira, Rifki Indra; Bataona, Daniel Silli
EMITTER International Journal of Engineering Technology Vol 6, No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (455.566 KB) | DOI: 10.24003/emitter.v6i2.306

Abstract

Leaf bone structure has a characteristic that can be used as a reference in digital image processing. One form of digital image processing is image edge detection. Edge detection is the process of extracting edge information from an image. In this research, Adaptive Ant Colony Optimization algorithm is proposed for edge image detection of leaf bone structure. The Adaptive Ant Colony Optimization method is a modification of Ant Colony Optimization, in which the initial an ant dissemination process is no longer random, but it is done by a pixel placement process that allows for an edge based on the value of the image gradient. As a comparison also performed edge detection using Robert and Sobel method. Based on the experiments performed, Adaptive Ant Colony Optimization algorithm is capable of producing more detailed image edge detection and has thicker borders than others. Keywords: edge detection, ant colony optimization, robert, sobel
Simulation design of an Intelligent system for Automotive transmission Gearbox Based on FPGA SAEED, Azzad Bader
EMITTER International Journal of Engineering Technology Vol 6, No 2 (2018)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (930.128 KB) | DOI: 10.24003/emitter.v6i2.310

Abstract

In this paper, an artificial  intelligent system has been designed, realized, and downloaded into  FPGA (Field Programmable Gate Array), which is used to control five speed ratio steps ( 1,2,3,4,5) of an electrically controlled type of  automotive transmission gearbox of a vehicle, the first speed ratio step (1) is characterized by the  highest torque, a lowest velocity, while, the  fifth step is characterized by the lowest torque, and highest velocity.The Back-propagation neural network has been used as the intelligent system for the proposed system. The proposed neural network is composed from   eight neurons in the input layer, five neurons in the hidden layer, and five neurons in the output layer. For real downloading into the FPGA, Satlins and Satlin linear activation function has been used for the hidden and output layers respectively. The training function Trainlm ( Levenberg-Marqurdt training) has been used as a learning method for the proposed neural network, which it has a powerful algorithm. The proposed simulation system has been designed and downloaded into the FPGA using MATLAB and ISE Design Suit software packages.
Nuclei Detection and Classification System Based On Speeded Up Robust Feature (SURF) Amalina, Neneng Nur; Ramadhani, Kurniawan Nur; Sthevanie, Febryanti
EMITTER International Journal of Engineering Technology Vol 7, No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (842.261 KB) | DOI: 10.24003/emitter.v7i1.288

Abstract

Tumors contain a high degree of cellular heterogeneity. Various type of cells infiltrate the organs rapidly due to uncontrollable cell division and the evolution of those cells. The heterogeneous cell type and its quantity in infiltrated organs determine the level maglinancy of the tumor. Therefore, the analysis of those cells through their nuclei is needed for better understanding of tumor and also specify its proper treatment. In this paper, Speeded Up Robust Feature (SURF) is implemented to build a system that can detect the centroid position of nuclei on histopathology image of colon cancer. Feature extraction of each nuclei is also generated by system to classify the nuclei into two types, inflammatory nuclei and non-inflammatory nuclei. There are three classifiers that are used to classify the nuclei as performance comparison, those are k-Nearest Neighbor (k-NN), Random Forest (RF), and State Vector Machine (SVM). Based on the experimental result, the highest F1 score for nuclei detection is 0.722 with Determinant of Hessian (DoH) thresholding = 50 as parameter. For classification of nuclei, Random Forest classifier produces F1 score of 0.527, it is the highest score as compared to the other classifier.
A Full-Bridge Bidirectional DC-DC Converter with Fuzzy Logic Voltage Control for Battery Energy Storage System Prasetyono, Eka; Sunarno, Epyk; Fuad, Muchamad Chaninul; Anggriawan, Dimas Okky; Windarko, Novie Ayub
EMITTER International Journal of Engineering Technology Vol 7, No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (903.883 KB) | DOI: 10.24003/emitter.v7i1.333

Abstract

Renewable energy sources require an energy storage system because its are fluctuating and electricity producing at certain times, even sometimes not in accordance with the needs of the load. To maintain continuity of electricity, smart battery energy storage system is needed. Therefore, this paper of a full-bridge bidirectional DC-DC Converter (FB-BDC) with Fuzzy Logic Control (FLC) is designed and implemented for battery energy storage application. The FLC has error and delta error of voltage level as input and duty cycle of FB-BDC as output. The FB-BDC is controlled by a microcontroller ARM Cortex-M4F STM32F407VG for voltage mode control. The FB-BDC topology is selected becuase battery storage system needed isolated and need high voltage ratio both for step-up and step-down. The main purpose of FB-BDC to perform bidirectional energy transfer both of DC-Bus and battery. Moreover, FB-BDC controls the DC-Bus voltage according to referenced value. The power flow and voltage on DC-Bus is controlled by FLC with voltage mode control. The experiment result shows the ability of FLC  voltage mode control to control FB-BDC on regulate charging voltage with an error 1% and sharing voltage 1.5% form referenced value.
Enhanced PEGASIS using Dynamic Programming for Data Gathering in Wireless Sensor Network Mufid, Mohammad Robihul; Al Rasyid, M. Udin Harun; Syarif, Iwan
EMITTER International Journal of Engineering Technology Vol 7, No 1 (2019)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (900.727 KB) | DOI: 10.24003/emitter.v7i1.360

Abstract

A number of routing protocol algorithms such as Low-Energy Adaptive Clustering Hierarchy (LEACH) and Power-Efficient Gathering in Sensor Information Systems (PEGASIS) have been proposed to overcome the problem of energy consumption in Wireless Sensor Network (WSN) technology. PEGASIS is a development of the LEACH protocol, where within PEGASIS all nodes are active during data transfer rounds thus limiting the lifetime of the WSN. This study aims to propose improvements from the previous PEGASIS version by giving the name Enhanced PEGASIS using Dynamic Programming (EPDP). EPDP uses the Dominating Set (DS) concept in selecting a subset of nodes to be activated and using dynamic programming based optimization in forming chains from each node. There are 2 topology nodes that we use, namely random and static. Then for the Base Station (BS), it will also be divided into several scenarios, namely the BS is placed outside the network, in the corner of the network, and in the middle of the network. Whereas to determine the performance between EPDP, PEGASIS and LEACH, an analysis of the number of die nodes, number of alive nodes, and remaining of energy were analyzed. From the experiment result, it was found that the EPDP protocol had better performance compared to the LEACH and PEGASIS protocols in terms of number of die nodes, number of alive nodes, and remaining of energy. Whereas the best BS placement is in the middle of the network and uses static node distribution topologies to save more energy.