cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota surabaya,
Jawa timur
INDONESIA
EMITTER International Journal of Engineering Technology
ISSN : 2355391x     EISSN : -     DOI : -
Core Subject : Science,
EMITTER International Journal of Engineering Technology is a BI-ANNUAL journal published by Politeknik Elektronika Negeri Surabaya (PENS). It aims to encourage initiatives, to share new ideas, and to publish high-quality articles in the field of engineering technology and available to everybody at no cost. It stimulates researchers to explore their ideas and enhance their innovations in the scientific publication on engineering technology. EMITTER International Journal of Engineering Technology primarily focuses on analyzing, applying, implementing and improving existing and emerging technologies and is aimed to the application of engineering principles and the implementation of technological advances for the benefit of humanity.
Arjuna Subject : -
Articles 436 Documents
Sustainable and Resilient Smart Water Grids: A Solution for Developing Countries Muhammad Jawwad; Khurram Shehzad Khattak; Zawar H. Khan; T. Aron Gulliver; Akhtar Nawaz Khan; Mushtaq A. Khan
EMITTER International Journal of Engineering Technology Vol 9 No 1 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i1.595

Abstract

According to a United Nations report, the world population will increase from 7 billion to 9 billion by 2050. Further, the water stress level is more than 70% in 22 countries while in another 31 countries it is between 25% and 70%. More than 2 billion people live in these 53 countries which are all underdeveloped. Water use has increased by 1% per year since the 1980s, so global demand is expected to rise by 30% by 2050. Thus, efficient water grid management is imperative to ensure there is sufficient water for the future. Information and Communication Technology (ICT) can be used to create smart water grids to optimize water distribution, reduce waste and leakage, and resolve quality and overuse issues. In this work, a low cost, real-time, reliable and sustainable IoT based solution called SmartTubewell is proposed for smart water grid management. It is composed of two components, a sensor node installed at tube wells and an application layer on Amazon Web Services (AWS) for data analysis, storage and processing. The sensor node is based on a Raspberry Pi with integrated current and voltage sensors and a local database. The sensor data is transmitted to AWS using a cellular (GPRS) network. A comparison between the proposed system and SCADA is presented which shows that SmartTubewell has a much lower cost. A field test with multiple tube wells in Peshawar, Pakistan indicates that this is a suitable solution for developing countries.
The Determination of Optimal Operating Condition For an Off-Grid Hybrid Renewable Energy Based Micro-Grid: A Case Study in Izmir, Turkey Sezai Polat; Hacer Sekerci
EMITTER International Journal of Engineering Technology Vol 9 No 1 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i1.597

Abstract

Nowadays, off-grid systems, which do not require grid connection investment instead of grid connected systems, have become quite feasible. In this study, a feasibility analysis was carried out for a hybrid energy system using solar and wind energy sources to supply to uninterrupted electricity demand of a region with 100 villas in Izmir, Turkey. It has been shown that how changes cost of the hybrid energy system sizing according to the control strategies by using the HOMER software. In the paper, two different control strategies are determined as Cycle Charging (CC) and Load Following (LF), and then the control strategies are compared. According to the results obtained as a result of the simulations, it has been revealed that the research region to operate with CC can supply to the electrical energy demand with lower capacity system architecture. The CC was found to be more suitable for the research region than LF in terms of both Cost of Energy (COE) and Net Preset Cost (NPC).
Hospital Length of Stay Prediction based on Patient Examination Using General features Rabiatul Adawiyah; Tessy Badriyah; Iwan Syarif
EMITTER International Journal of Engineering Technology Vol 9 No 1 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i1.609

Abstract

As of the year 2020, Indonesia has the fourth most populous country in the world. With Indonesia’s population expected to continuously grow, the increase in provision of healthcare needs to match its steady population growth. Hospitals are central in providing healthcare to the general masses, especially for patients requiring medical attention for an extended period of time. Length of Stay (LOS), or inpatient treatment, covers various treatments that are offered by hospitals, such as medical examination, diagnosis, treatment, and rehabilitation. Generally, hospitals determine the LOS by calculating the difference between the number of admissions and the number of discharges. However, this procedure is shown to be unproductive for some hospitals. A cost-effective way to improve the productivity of hospital is to utilize Information Technology (IT). In this paper, we create a system for predicting LOS using Neural Network (NN) using a sample of 3055 subjects, consisting of 30 input attributes and 1 output attribute. The NN default parameter experiment and parameter optimization with grid search as well as random search were carried out. Our results show that parameter optimization using the grid search technique give the highest performance results with an accuracy of 94.7403% on parameters with a value of Epoch 50, hidden unit 52, batch size 4000, Adam optimizer, and linear activation. Our designated system can be utilised by hospitals in improving their effectiveness and efficiency, owing to better prediction of LOS and better visualization of LOS done by web visualization.
Indian Sign Language Recognition through Hybrid ConvNet-LSTM Networks Muthu Mariappan H; Dr Gomathi V
EMITTER International Journal of Engineering Technology Vol 9 No 1 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i1.613

Abstract

Dynamic hand gesture recognition is a challenging task of Human-Computer Interaction (HCI) and Computer Vision. The potential application areas of gesture recognition include sign language translation, video gaming, video surveillance, robotics, and gesture-controlled home appliances. In the proposed research, gesture recognition is applied to recognize sign language words from real-time videos. Classifying the actions from video sequences requires both spatial and temporal features. The proposed system handles the former by the Convolutional Neural Network (CNN), which is the core of several computer vision solutions and the latter by the Recurrent Neural Network (RNN), which is more efficient in handling the sequences of movements. Thus, the real-time Indian sign language (ISL) recognition system is developed using the hybrid CNN-RNN architecture. The system is trained with the proposed CasTalk-ISL dataset. The ultimate purpose of the presented research is to deploy a real-time sign language translator to break the hurdles present in the communication between hearing-impaired people and normal people. The developed system achieves 95.99% top-1 accuracy and 99.46% top-3 accuracy on the test dataset. The obtained results outperform the existing approaches using various deep models on different datasets.
Optimized Graph Search Algorithms for Exploration with Mobile Robot Aydın GULLU; Hilmi KUŞÇU
EMITTER International Journal of Engineering Technology Vol 9 No 2 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i2.614

Abstract

Graph search algorithms and shortest path algorithms, designed to allow real mobile robots to search unknown environments, are typically run in a hybrid manner, which results in the fast exploration of an entire environment using the shortest path. In this study, a mobile robot explored an unknown environment using separate depth-first search (DFS) and breadth-first search (BFS) algorithms. Afterward, developed DFS + Dijkstra and BFS + Dijkstra algorithms were run for the same environment. It was observed that the newly developed hybrid algorithm performed the identification using less distance. In experimental studies with real robots, progression with DFS for the first-time discovery of an unknown environment is very efficient for detecting boundaries. After finding the last point with DFS, the shortest route was found with Dijkstra for the robot to reach the previous node. In defining a robot that works in a real environment using DFS algorithm for movement in unknown environments and Dijkstra algorithm in returning, time and path are shortened. The same situation was tested with BFS and the results were examined. However, DFS + Dijkstra was found to be the best algorithm in field scanning with real robots. With the hybrid algorithm developed, it is possible to scan the area with real autonomous robots in a shorter time. In this study, field scanning was optimized using hybrid algorithms known.
Series Arc Fault Breaker in Low Voltage Using Microcontroller Based on Fast Fourier Transform Dimas Okky Anggriawan; Audya Elisa Rheinanda; Muhammad Khanif Khafidli; Eka Prasetyono; Novie Ayub Windarko
EMITTER International Journal of Engineering Technology Vol 9 No 2 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i2.615

Abstract

Series Arc Fault is one of the disturbances of arcing jump is caused by gas ionization between two ends of damaged conductors or broken wire forming a gap in the insulator. Series arc fault is the primary driver of electrical fire. However, lack of knowledge of the disturbance of series arc fault causes the problem of electrical fire not be mitigated. Magnitude current is not capable to detect of series arc fault. Therefore, this paper proposes fast fourier transform (FFT) to detect series AC arc fault in low voltage using microcontroller ARM STM32F7NGH in real time. A cheap and high speed of microcontroller ARM STM32F7NGH can be used for FFT computation to transform signal in time domain to frequency domain. Moreover, in this paper, protection of series AC arc fault is proposed in the real time mode. In this experimental process, some various experiments are tested to evaluate the reliability of FFT and protection with various load starts from 1 A, 2 A, 3 A, 4 A in resistive load. The result of this experiment shows that series AC arc fault protection with STM32F7 microcontroller and FFT algorithm can be utilized to ensure series AC arc fault properly.
SDN-Based Network Intrusion Detection as DDoS defense system for Virtualization Environment Saifudin Usman; Idris Winarno; Amang Sudarsono
EMITTER International Journal of Engineering Technology Vol 9 No 2 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i2.616

Abstract

Nowadays, DDoS attacks are often aimed at cloud computing environments, as more people use virtualization servers. With so many Nodes and distributed services, it will be challenging to rely solely on conventional networks to control and monitor intrusions. We design and deploy DDoS attack defense systems in virtualization environments based on Software-defined Networking (SDN) by combining signature-based Network Intrusion Detection Systems (NIDS) and sampled flow (sFlow). These techniques are practically tested and evaluated on the Proxmox production Virtualization Environment testbed, adding High Availability capabilities to the Controller. The evaluation results show that it promptly detects several types of DDoS attacks and mitigates their negative impact on network performance. Moreover, it also shows good results on Quality of Service (QoS) parameters such as average packet loss about 0 %, average latency about 0.8 ms, and average bitrate about 860 Mbit/s.
The Development of A Reliability Evaluation Application for Power Plant Steam Turbine Vibrations to Predict Its Failure Moch. Faqih; Nu Rhahida Arini; Hendrik Elvian Gayuh Prasetya
EMITTER International Journal of Engineering Technology Vol 9 No 2 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i2.619

Abstract

A steam turbine is the most critical component in a thermal power plant. Due to its crucial function, it should be maintained to be able to operate without failure. This paper aims to develop an application that can be used to analyze the reliability and synchronization of vibrations in a single evaluation through the application. The application is helpful to decide the proper time the maintenance should be performed in order to provide a better maintenance strategy. In this paper, the application was used to make an ease in evaluating the reliability and vibration of a 670 MW power plant steam turbine. The reliability was analyzed by qualitative and quantitative methods. The vibration evaluation using Fast Fourier Transform (FFT) was done by diagnosing the failure symptoms from vibration spectrum. The analysis of synchronization of vibrations conducted by comparing the vibration frequency and the natural frequency of the system which can be calculated easily using the application. The algorithm program of both evaluations was built using GNU Octave software to make a friendly user interface. From the evaluation result, the most critical components of the steam turbine are coupling, labyrinth seals, bearing, diaphragm, turbine control valve, and turbine stop valve. The maintenance interval based on the expected reliability of 90% produces the highest reliability improvement. Based on the vibration analysis, there is no failure symptoms detected in the turbine bearings. Furthermore, the dominant frequencies of vibration are distant from the natural frequency. Therefore, the steam turbine condition is acceptable to operate.
Hungarian Mechanism based Sectored FFR for Irregular Geometry Multicellular Networks Rahat Ullah; Zubair Khalid; Fargham Sandhu; Imran Khan
EMITTER International Journal of Engineering Technology Vol 9 No 2 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i2.627

Abstract

The growing demands for mobile broadband application services along with the scarcity of the spectrum have triggered the dense utilization of frequency resources in cellular networks. The capacity demands are coped accordingly, however at the detriment of added inter-cell interference (ICI). Fractional Frequency Reuse (FFR) is an effective ICI mitigation approach when adopted in realistic irregular geometry cellular networks. However, in the literature optimized spectrum resources for the individual users are not considered. In this paper Hungarian Mechanism based Sectored Fractional Frequency Reuse (HMS-FFR) scheme is proposed, where the sub-carriers present in the dynamically partitioned spectrum are optimally allocated to each user. Simulation results revealed that the proposed HMS-FFR scheme enhances the system performance in terms of achievable throughput, average sum rate, and achievable throughput with respect to load while considering full traffic.
A Review on Forwarding Strategies in NDN based Vehicular Networks Dependra Dhakal; Arpan Gautam; Sudipta Dey; Kalpana Sharma
EMITTER International Journal of Engineering Technology Vol 9 No 2 (2021)
Publisher : Politeknik Elektronika Negeri Surabaya (PENS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24003/emitter.v9i2.632

Abstract

Named Data Networking (NDN) is a model that has been proposed by many researchers to alter the long-established IP based networking model. It derives the content centric approach rather than host-based approach. This is gaining even more traction in the wireless network and is able to replace the conventional IP-based networking. Up to now, NDN has proven to be fruitful when used with certain limitations in vehicular networks. Vehicular networks deal with exchanging information across fast moving complex vehicle network topology. The sending and receiving of information in such a scenario acts as a challenge and thus requires an effective forwarding strategy to address this problem. Different research work has provided with multiple forwarding strategy that solves the current problem up to some limit but further research work is still longed for to get an optimum solution. This paper provides a brief survey on current existing forwarding strategies related to vehicular networks using NDN as well as providing information on various resources and technologies used in it.