cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jurnal@if.uinsgd.ac.id
Editorial Address
Gedung Fakultas Sains dan Teknologi Lt. 4 Jurusan Teknik Informatika Jl. A.H. Nasution No. 105 Cibiru Bandung 40614 Telp. (022) 7800525 / Fax (022) 7803936 Email : jurnal@if.uinsgd.ac.id
Location
Kota bandung,
Jawa barat
INDONESIA
JOIN (Jurnal Online Informatika)
ISSN : 25281682     EISSN : 25279165     DOI : 10.15575/join
Core Subject : Science,
JOIN (Jurnal Online Informatika) is a scientific journal published by the Department of Informatics UIN Sunan Gunung Djati Bandung. This journal contains scientific papers from Academics, Researchers, and Practitioners about research on informatics. JOIN (Jurnal Online Informatika) is published twice a year in June and December. The paper is an original script and has a research base on Informatics.
Arjuna Subject : -
Articles 490 Documents
Genetic Algorithm to Optimize k-Nearest Neighbor Parameter for Benchmarked Medical Datasets Classification Rizki Tri Prasetio
JOIN (Jurnal Online Informatika) Vol. 5 No 2 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i2.656

Abstract

Computer assisted medical diagnosis is a major machine learning problem being researched recently. General classifiers learn from the data itself through training process, due to the inexperience of an expert in determining parameters. This research proposes a methodology based on machine learning paradigm. Integrates the search heuristic that is inspired by natural evolution called genetic algorithm with the simplest and the most used learning algorithm, k-nearest Neighbor. The genetic algorithm were used for feature selection and parameter optimization while k-nearest Neighbor were used as a classifier. The proposed method is experimented on five benchmarked medical datasets from University California Irvine Machine Learning Repository and compared with original k-NN and other feature selection algorithm i.e., forward selection, backward elimination and greedy feature selection.  Experiment results show that the proposed method is able to achieve good performance with significant improvement with p value of t-Test is 0.0011.
Sentiment Analysis about Large-Scale Social Restrictions in Social Media Twitter Using Algoritm K-Nearest Neighbor Ikhsan Romli; Shanti Prameswari R; Antika Zahrotul Kamalia
JOIN (Jurnal Online Informatika) Vol 6 No 1 (2021)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v6i1.670

Abstract

Sentiment analysis is a data processing to recognize topics that people talk about and their sentiments toward the topics, one of which in this study is about large-scale social restrictions (PSBB). This study aims to classify negative and positive sentiments by applying the K-Nearest Neighbor algorithm to see the accuracy value of 3 types of distance calculation which are cosine similarity, euclidean, and manhattan distance for Indonesian language tweets about large-scale social restrictions (PSBB) from social media twitter. With the results obtained, the K-Nearest Neighbor accuracy by the Cosine Similarity distance 82% at k = 3, K-Nearest Neighbor by the Euclidean Distance with an accuracy of 81% at k = 11 and K-Nearest Neighbor by Manhattan Distance with an accuracy 80% at k = 5, 7, 9, 11, and 13. So, in this study the K-Nearest Neighbor algorithm with the Cosine Similarity Distance calculation gets the highest point.
Organization Cybernetics for Railway Supplier Selection Mailasan Jayakrishnan; Abdul Karim Mohamad; Mokhtar Mohd Yusof
JOIN (Jurnal Online Informatika) Vol 6 No 1 (2021)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v6i1.689

Abstract

The comprehensive stimulation for this research arises from the necessity to continually understand and investigate the Information System (IS) discipline body of knowledge from organizational practice. Specifically, in this study, we focus on comparing a few available excellence frameworks, data analytics, and cybernetics approaches. Such knowledge and skill practice in the IS field is predominant for both IS research and teaching. On the other hand, to propose a relevant performance reporting model using data analytics and cybernetics that entail a body of knowledge and skill is crucial for the development and transformation of organizational excellence. Yet, it helps to design an online real-time organizational dashboard that produces knowledge for its application and decision-making within an organizational practice. IS discipline in an organization is comparatively young and its specification in academia as well as in practice is rapidly changing, we focus on the practical design, and IS structure for organizational excellence through employing information technologies.
Sentiment Analysis on Social Distancing and Physical Distancing on Twitter Social Media using Recurrent Neural Network (RNN) Algorithm Fikri Aldi Nugraha; Nisa Hanum Harani; Roni Habibi; Rd. Nuraini Siti Fatonah
JOIN (Jurnal Online Informatika) Vol. 5 No 2 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i2.632

Abstract

The government is seeking preventive steps to reduce the risk of the spread of Covid-19, one of which is social restrictions that have become popular with social distancing and physical distancing. One way to assess whether the steps taken by the government regarding social and physical distancing are accepted or not by the community is by conducting sentiment analysis. The process of sentiment analysis is carried out using a variant of the Recurrent Neural Network (RNN), namely Long Short-Term Memory (LSTM). In this study, the results obtained from the sentiment analysis, where the public response to social distancing and physical distancing has more positive sentiments than negative sentiments. To measure the accuracy level of sentiment analysis using the Recurrent Neural Network (RNN) algorithm and evaluation of the modeling is done using confusion matrix where the results obtained for the training dataset are 89% accuracy, 89% recall, 89% precision, and 89% F1 Score. Meanwhile, for the test dataset, an accuracy of 80% was obtained, a recall of 79%, a precision of 81%, and an F1 score of 80%.
Prototype Program Hand Gesture Recognize Using the Convex Hull Method and Convexity Defect on Android Muhammad Adi Khairul Anshary; Eka Wahyu Hidayat; Tiara Amalia
JOIN (Jurnal Online Informatika) Vol. 5 No 2 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i2.594

Abstract

One of the research topics of Human-Computer Interaction is the development of input devices and how users interact with computers. So far, the application of hand gestures is more often applied to desktop computers. Meanwhile, current technological developments have given rise to various forms of computers, one of which is a computer in the form of a smartphone whose users are increasing every year. Therefore, hand gestures need to be applied to smartphones to facilitate interaction between the user and the device. This study implements hand gestures on smartphones using the Android operating system. The algorithm used is convex hull and convexity defect for recognition of the network on the hand which is used as system input. Meanwhile, to ensure this technology runs well, testing was carried out with 3 scenarios involving variable lighting, background color, and indoor or outdoor conditions. The results of this study indicate that Hand gesture recognition using convex hull and convexity defect algorithms has been successfully implemented on smartphones with the Android operating system. Indoor or outdoor testing environment greatly affects the accuracy of hand gesture recognition. For outdoor use, a green background color with a light intensity of 1725 lux produces 76.7% accuracy, while for indoors, a red background color with a light intensity of 300 lux provides the greatest accuracy of 83.3%.
The Hybrid of Jaro-Winkler and Rabin-Karp Algorithm in Detecting Indonesian Text Similarity Muhamad Arief Yulianto; Nurhasanah Nurhasanah
JOIN (Jurnal Online Informatika) Vol 6 No 1 (2021)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v6i1.640

Abstract

The String-matching technique is part of the similarity technique. This technique can detect the similarity level of the text. The Rabin-Karp is an algorithm of string-matching type. The Rabin-Karp is capable of multiple patterns searching but does not match a single pattern. The Jaro-Winkler Distance algorithm can find strings within approximate string matching. This algorithm is very suitable and gives the best results on the matching of two short strings. This study aims to overcome the shortcomings of the Rabin-Karp algorithm in the single pattern search process by combining the Jaro-Winkler and Rabin-Karp algorithm methods. The merging process started from pre-processing and forming the K-Gram data. Then, it was followed by the calculation of the hash value for each K-Gram by the Rabin-Karp algorithm. The process of finding the same hash score and calculating the percentage level of data similarity used the Jaro-Winkler algorithm. The test was done by comparing words, sentences, and journal abstracts that have been rearranged. The average percentage of the test results for the similarity level of words in the combination algorithm has increased. In contrast, the results of the percentage test for the level of similarity of sentences and journal abstracts have decreased. The experimental results showed that the combination of the Jaro-Winkler algorithm on the Rabin-Karp algorithm can improve the similarity of text accuracy.
Discovering Computer Science Research Topic Trends using Latent Dirichlet Allocation Kartika Rizqi Nastiti; Ahmad Fathan Hidayatullah; Ahmad Rafie Pratama
JOIN (Jurnal Online Informatika) Vol 6 No 1 (2021)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v6i1.636

Abstract

Before conducting a research project, researchers must find the trends and state of the art in their research field. However, that is not necessarily an easy job for researchers, partly due to the lack of specific tools to filter the required information by time range. This study aims to provide a solution to that problem by performing a topic modeling approach to the scraped data from Google Scholar between 2010 and 2019. We utilized Latent Dirichlet Allocation (LDA) combined with Term Frequency-Indexed Document Frequency (TF-IDF) to build topic models and employed the coherence score method to determine how many different topics there are for each year’s data. We also provided a visualization of the topic interpretation and word distribution for each topic as well as its relevance using word cloud and PyLDAvis. In the future, we expect to add more features to show the relevance and interconnections between each topic to make it even easier for researchers to use this tool in their research projects.
Long Short-Term Memory Approach for Predicting Air Temperature In Indonesia Putu Harry Gunawan; Devi Munandar; Anis Zainia Farabiba
JOIN (Jurnal Online Informatika) Vol. 5 No 2 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i2.551

Abstract

Air temperature is one of the main factors for describing the weather behaviour in the earth. Since Indonesia is located on and near equator, then monitoring the air temperature is needed to determine either global climate change occurs or not. Climate change can have an impact on biological growth in various fields. For instance, climate change can affect the quality of production and growth of animal and plants. Therefore, air temperature prediction is important to meteorologists and Indonesian government to provide information in many sectors. Various prediction algorithms have been used to predict temperature and produce different accuracy. In this study, the deep learning method with Long Short-Term Memory (LSTM) model is used to predict air temperature. Here, the results show that LSTM model with one layer and Adaptive Moment Estimation (ADAM) optimizer produce accuracy which is 32% of , 0.068 of MAE and 0.99 of RMSE. Moreover, here, ADAM optimizer is found better than Stochastic Gradient Descent (SGD) optimizer.
Design of an Information System for Class Scheduling a Web-Based Lecture Schedule (Case Study: Faculty of Engineering and Science, Ibn Khaldun University) Novita BR Ginting; Yuggo Afrianto; Suratun suratun
JOIN (Jurnal Online Informatika) Vol 6 No 2 (2021)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v6i2.727

Abstract

During the Covid-19 pandemic, the lecture process was carried out online, so it impacted other academic activities such as the preparation of lecture schedules. The results of observations at the Faculty of Engineering and Science found that the practice of lecture schedules was carried out manually, such as the schedule coordination process was carried out face-to-face between study programs, faculties, and lecturers to overcome conflicts in the use of rooms and teaching time. Changes in the teaching schedule need to be re-checked on the use of the room and the lecturer's teaching time because it has not been documented with the information system. Hence, this study aims to build an information system for preparing lecture schedules using the Greedy Best First Search Method based on the willingness of lecturers to teach. The system was developed using the RAD (Rapid Application Development) and testing using BlackBox testing. The results of this study succeeded in building a lecture scheduling information system that was able to generate lecture schedules automatically and quickly without having to coordinate face-to-face to support online lectures during the Covid-19 pandemic.
Sundanese Stemming using Syllable Pattern Ade Sutedi; Rickard Elsen; Muhammad Rikza Nasrulloh
JOIN (Jurnal Online Informatika) Vol 6 No 2 (2021)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v6i2.812

Abstract

Stemming is a technique to return the word derivation to the root or base word. Stemming is widely used for data processing such as searching word indexes, translating, and information retrieval from a document in the database. In general, stemming uses a morphological pattern from a derived word to produce the original word or root word.  In the previous research, this technique faced over-stemming and under-stemming problems. In this study, the stemming process will be improved by the syllable pattern (canonical) based on the phonological rule in Sundanese. The stemming result for syllable patterns gets an accuracy of 89% and the execution of the test data resulted in 95% from all the basic words. This simple algorithm has the advantage of being able to adjust the position of the syllable pattern with the word to be stemmed. Due to some data shortage constraints (typo, loan-word, non-deterministic word with syllable pattern), we can improve to increase the accuracy such as adjusting words and adding reference dictionaries. In addition, this algorithm has a drawback that causes the execution to be over-stemming.