cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kab. ponorogo,
Jawa timur
INDONESIA
Fountain of Informatics Journal
ISSN : 25414313     EISSN : 25485113     DOI : -
Core Subject :
Fountain of Informatics Journal (FIJ), with registered ISSN 2541-4313 (Print), ISSN 2548-5113 (Online), and DOI 10.21111/fij, is a peer-reviewed journal published semi-annual (May and November) by Universitas Darussalam Gontor. The FIJ invites manuscripts in the various topics include, but not limited to, functional areas of the information system, software engineering, computer network and game technology.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 4, No 2 (2019): November" : 6 Documents clear
Perbandingan Metode Lexicon-based dan SVM untuk Analisis Sentimen Berbasis Ontologi pada Kampanye Pilpres Indonesia Tahun 2019 di Twitter Ahmad Choirun Najib; Akhmad Irsyad; Ghiffari Assamar Qandi; Nur Aini Rakhmawati
Fountain of Informatics Journal Vol 4, No 2 (2019): November
Publisher : Universitas Darussalam Gontor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21111/fij.v4i2.3573

Abstract

AbstrakPenggunaan media sosial semakin hari semakin meningkat. Salah satu media sosial yang popular saat ini adalah Twitter. Menjelang pemilihan Presiden Republik Indonesia semakin banyak tweet yang membahas tentang kegiatan tersebut. Hal ini menyebabkan topik kampanye pemilu memiliki peluang yang baik untuk dilakukan proses analisis sentimen. Saat ini, mayoritas analisis sentimen di Indonesia dilakukan hanya menilai sentimen dari kalimat tanpa mengetahui apa entitas yang ada dalam kalimat. Tujuan penelitian ini yaitu melakukan analisis sentimen dengan pendekatan berbasis ontologi. Ontologi digunakan dalam menyaring data yang akan digunakan. Ontologi dalam penelitian ini adalah ekonomi dengan atribut finansial, lapangan kerja, dan kesejahteraan. Proses analisis sentimen dilakukan dengan metode Lexicon-based dan Support Vector Machine (SVM). Proses akuisisi data diperoleh sejumlah 700.000 tweet. Koleksi tersebut diseleksi berdasarkan ontologi ekonomi menghasilkan 16.998 tweet dan dilakukan pelabelan manual sebanyak 1.600. Kemudian dilakukan pengolahan data hingga diperoleh dataset final sejumlah 1.050 tweet. Berdasarkan hasil penelitian yang dilakukan akurasi yang diperoleh berdasarkan metode Lexicon-based adalah 39% dan metode SVM sebesar 83%. Dari penelitian ini diketahui bahwa SVM mempunyai performa yang lebih baik dibandingkan dengan Lexicon-based. Hasil Lexicon-based menunjukkan bahwa sentimen pada mayoritas atribut berupa netral. Sedangkan hasil SVM menunjukkan bahwa sentimen pada mayoritas atribut (finansial dan kesejahteraan) berupa positif, sisanya (lapangan kerja) berupa netral. Selanjutnya, proses ekstraksi dan pembuatan ontologi Bahasa Indonesia secara semi-otomatis pada dataset perlu untuk dikembangkan pada penelitian berikutnya untuk menyempurnakan ontologi.Kata kunci: Analisis Sentimen, Twitter, Ontology, SVM, Lexicon Abstract[Comparison of the Lexicon-based and SVM Method for Ontology-Based Analysis of the 2019 Presidential Election Campaign on Twitter] The use of social media is increasing. One of the most popular social media is Twitter. Towards the election of the President of the Republic of Indonesia, election topic tweets discussed almost every day. Hence, it is suitable for the sentiment analysis process. Nowadays, the sentiment analysis is only evaluating the sentence without knowing what the entity is in the sentence. To overcome this drawback, we propose a sentiment analysis based on ontology. Ontology is used to filter the data to be used. The ontology used in this study is economics with attributes, i.e., financial employment, and welfare. The sentiment analysis process is carried out using the Lexicon and Support Vector Machine (SVM) based methods. The process of acquiring data obtained 700,000 tweets. The collection was selected based on economic ontology to produce 16,998 tweets, and 1,600 manual labels were labelled. Then, the number of the final dataset is 1,050 tweets. The results show that the accuracy of the Lexicon-based method is 39%, and the SVM method is 83%. The SVM has better performance than Lexicon-based. Lexicon-based results show that the sentiment on the majority attributes is neutral. While the SVM results show that the sentiment on the majority attributes (financial and welfare) is positive, the rest (employment) is neutral. A semi-automatic ontology extraction and development for Bahasa Indonesia is necessary for the future works to make a comprehensive ontology and provide better results. Keywords: Sentiment Analysis, Twitter, Ontology, SVM, Lexicon
Rekayasa Sistem Pendukung Keputusan dalam Lomba Desa Tingkat Kabupaten dengan Metode Analytical Hierarchy Process Hilyah Magdalena; Hadi Santoso; Wahyuni Sahara
Fountain of Informatics Journal Vol 4, No 2 (2019): November
Publisher : Universitas Darussalam Gontor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21111/fij.v4i2.3441

Abstract

AbstrakLomba desa adalah sebuah sarana untuk menilai dan memonitor kemajuan desa secara berkala di suatu Kecamatan. Lomba Desa tingkat Kabupaten membutuhkan tim penilai dari perwakilan Kecamatan dan staf bidang pemerintaan di Kabupaten. Masalah yang dihadapi oleh tim penilai adalah sulitnya membuat keputusan objektif.  Hal ini disebabkan lomba desa mempunyai kriteria cukup banyak yaitu, pendidikan, kesehatan masyarakat, ekonomi masyarakat, keamanan dan ketertiban, pemerintahan, partisipasi masyarakat, lembaga kemasyarakatan, dan pemberdayaan & kesejahteraan keluarga (PKK). Berdasarkan fakta bahwa lomba desa adalah sistem multi kriteria dan multi alternatif, maka  penelitian ini mengusulkan sebuah Sistem Pendukung Keputusan (SPK) dengan metode Analytical Hierarchy Process (AHP). AHP dianggap sesuai karena metode ini menghasilkan keputusan objektif dari kondisi multi kriteria dan multi alternatif seperti pada lomba desa. Lokasi penelitian ini adalah Kecamatan Pangkalan Baru di Kabupaten Bangka Tengah Provinsi Bangka Belitung. Proses pengumpulan data dilakukan dengan observasi, wawancara, dan kuesioner. Pengolahan data dikalkulasi dengan metode AHP, untuk memastikan validitas data dan penggabungan hasil perhitungan gabungan beberapa anggota tim penilai dapat menggunakan aplikasi Expert Choice. SPK ini adalah pengembangan sistem yang bertujuan mengubah pengambilan keputusan dalam lomba desa sehingga desa terpilih dapat menjadi acuan bagi desa lainnya, dan desa yang belum terpilih juga dapat evaluasi kelemahan desanya. Hasil penelitian memberikan keputusan yang mampu menekan kemungkinan protes atau ketidakpuasan dari peserta lainnya. Dimasa depan penelitian ini dapat dikembangkan menjadi sistem pendukung keputusan berbasis web.Kata kunci: Lomba Desa, SPK, AHP, Kabupaten Bangka Tengah Abstract[Decision Support System Engineering in District-level Village Contest using Analytical Hierarchy Process Method]. Village competition is a means to assess and monitor village progress in a Sub-district periodically. The Village Competition at the Regency level requires an assessment team from representatives of the sub-district and staff in the field of government in the Regency. The problem faced by the assessment team is the difficulty of making objective decisions. It is because the village competition has quite a lot of criteria namely, education, public health, community economy, security and order, governance, community participation, social institutions, and family empowerment & welfare. The village competition system which has many assessment criteria makes this system suitable using a decision support system with the AHP method. The location of this research is Pangkalan Baru Subdistrict in Central Bangka Regency, Bangka Belitung Province. The process of collecting data is done through observation, interviews, and questionnaires. Data processing is calculated by the AHP method, to ensure the validity of the data and the combination of the results of the combined calculations of several members of the assessment team can use the Expert Choice application. This SPK is the development of a system that aims to change decision making in village competitions so that selected villages can become a reference for other villages, and villages that have not been selected can also evaluate the weaknesses of their villages. The results of the study provide decisions that are able to suppress the possibility of protest or dissatisfaction from other participants. In the future, this research can be developed into a web-based decision support system.Keywords: Village Contest, DSS, AHP, Central Bangka Regency
Forecasting Model Penyakit Demam Berdarah Dengue Di Provinsi DKI Jakarta Menggunakan Algoritma Regresi Linier Untuk Mengetahui Kecenderungan Nilai Variabel Prediktor Terhadap Peningkatan Kasus Aji Rahmat Muhajir; Edi Sutoyo; Irfan Darmawan
Fountain of Informatics Journal Vol 4, No 2 (2019): November
Publisher : Universitas Darussalam Gontor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21111/fij.v4i2.3199

Abstract

AbstrakDi Indonesia khususnya di Provinsi DKI Jakarta sampai saat ini Demam Berdarah Dengue masih merupakan masalah kesehatan masyarakat yang utama. Meski sudah ada beberapa langkah untuk mengatasi penyebaran penyakit Demam Berdarah Dengue (DBD), namun harus ada metode analisis untuk melakukan peramalan terhadap kasus DBD menggunakan serangkaian data yang ada, dan memperkirakan nilai data dimasa yang akan datang. Penelitian ini bertujuan untuk membuat model forecasting peningkatan jumlah kasus Demam Berdarah Dengue menggunakan algoritma regresi linear dan melakukan analisis pengaruh dari temperatur, kelembapan dan curah hujan dalam kanaikan kasus penyakit Demam Berdarah Dengue di Provinsi DKI Jakarta dari model regresi yang dibuat. Data DBD yang digunakkan merupakan dataset pemantauan penyakit endemik yang diperoleh dari Dinas Kesehatan DKI Jakarta sedangkan data cuaca merupakan dataset yang didapat dari Dinas Lingkungan Hidup DKI Jakarta. Dari model regresi yang dibuat diperoleh nilai R2 sebesar 0.3622, hal tersebut menunjukan presentase pengaruh variabel predictor terhadap kasus demam berdarah sebesar 36.22%, sedangkan 63.78% dipengaruhi oleh faktor lain diluar variabel independen tersebut.Setelah melakukan uji simultan, dapat disimpulkan bahwa temperatur, kelambapan, dan curah hujan secara bersama-sama berpengaruh terhadap kenaikan jumlah kasus demam berdarah di Provinsi DKI Jakarta. Selanjutnya uji parsial membuktikan bahwa, kelembapan dan curah hujan memiliki pengaruh signifikan terhadap kenaikan kasus demam berdarah, sedangkan untuk variabel bebas, temperatur terbukti tidak memiliki pengaruh yang signifikan terhadap kenaikan kasus demam berdarah dengue di Provinsi DKI Jakarta.Kata kunci: Data Mining, Predictive Mining, Regresi Linier, Demam Berdarah Dengue Abstract[Forecasting Model of Dengue Hemorrhagic Fever in DKI Jakarta Using Linear Regression Algorithm to Know Trends of Predictor Variable Value for Case Increasing] In Indonesia specifically in DKI Jakarta Province, Dengue fever is still the main public health problem. Although there are already several steps to overcome the spread of Dengue Fever (DHF), there still needs to be an analytical method to forecast the increase dengue cases using and estimated data values in the future. This study aims to make a forecasting model for increasing the number of cases of Dengue Fever using a linear regression algorithm and analyzing the effect of temperature, humidity and rainfall in the case of Dengue Hemorrhagic Fever in DKI Jakarta Province from a regression model made. The DHF data used is an endemic disease monitoring dataset obtained from the DKI Jakarta Health Office while the weather data is a dataset obtained from the DKI Jakarta Environmental Service. From the regression model made, the value of R2 is 0.3622, it shows the percentage of the influence of temperature, humidity and rainfall on cases of dengue fever is 36.22%, while 63.78% is influenced by other factors outside the independent variable. After conducting a simultaneous test, it can be concluded that temperature, humidity and rainfall together, influence the increase in the number of dengue cases in DKI Jakarta Province. Then the partial test proves that humidity and rainfall have a significant influence on the increase in dengue cases, whereas for temperature independent variables proved that no significant effect on the increase in cases of dengue hemorrhagic fever in DKI Jakarta Province.Keywords: Data Mining, Predictive Mining, Linear Regression, Dengue Fever (DHF)
Front Matter and Back Matter Dihin Muriyatmoko
Fountain of Informatics Journal Vol 4, No 2 (2019): November
Publisher : Universitas Darussalam Gontor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21111/fij.v4i2.3764

Abstract

NPC Braking Decision for Unity Racing Game Starter Kit Using Naïve Bayes Muhammad Aminul Akbar; Tri Afirianto; Steven Willy Sanjaya; Ratih Kartika Dewi
Fountain of Informatics Journal Vol 4, No 2 (2019): November
Publisher : Universitas Darussalam Gontor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21111/fij.v4i2.3591

Abstract

AbstractRacing video game genre was still being popular today. One way to develop racing games quickly is by using a template or kit that is on the game engine. Racing Game Starter Kit (RGSK) was being the most popular racing game template for Unity game engine. However, there was problem in racing game’s NPC especially in RGSK related to NPC vehicle’s braking decision. The commonly used method is the Brake Zone, but the developers must manually place the zone themselves in the designated locations for braking. The solution that can be applied for that problem is see the angle formed by the vector of the NPC vehicle with the vector from 2 next following waypoint then determine the best configuration angle threshold for NPC braking, but this also has its shortcoming in which to get the best result, a proper threshold configuration is needed in each track. To resolve the problem, researcher proposed the method of machine learning, Naïve Bayes for the braking decision. Naïve Bayes uses two output classes (brake or no brake) in which the data will be obtained from the player. We use data from players who can control racing car games well or have never hit a wall and have fast lap times. The purpose of this study is to provide an alternative braking method to RGSK that can provide fast lap times but does not affect the game's FPS and without the need to determine or change any parameters on each track. The test result using RGSK v1.1.0a in Unity Game Engine showed that the proposed method can be an alternative method in RGSK braking decisions. Our NPC has faster lap time and was able to prevent the vehicle from crashing with the outer wall without dropping the game’s FPS (Frames per Second).Keywords: Braking Decision, Racing Game Starter Kit, Naïve Bayes, Machine learning, Unity engine AbstrakGenre video gim balap masih populer saat ini. Salah satu cara untuk mengembangkan game balap dengan cepat adalah menggunakan template atau kit yang ada di game engine. Racing Game Starter Kit (RGSK) adalah templat game balap paling populer pada Unity Game Engine. Namun, terdapat permasalahan NPC pada gim balapan terutama di RGSK terkait dengan keputusan pengereman kendaraan NPC. Metode yang digunakan untuk eksperimen jenis ini adalah Zona Rem. Namun, pengembang harus secara manual menempatkan zona tersebut di lokasi tertentu pada setiap lintasan. Solusi dari masalah ini yang sudah diterapkan pada RGSK v1.1.0a yaitu dapat menggunakan sudut yang dibentuk oleh vektor kendaraan NPC dengan vektor dari 2 titik arah berikutnya, kemudian menentukan ambang sudut terbaik untuk pengereman NPC, tetapi ini juga memiliki masalah yaitu untuk mendapatkan hasil putaran terbaik atau cepat, perlu menentukan konfigurasi ambang batas yang tepat di setiap trek. Untuk mengatasi masalah tersebut, peneliti mengusulkan metode pembelajaran mesin, Naïve Bayes untuk keputusan pengereman. Naïve Bayes menggunakan dua kelas output (rem atau tidak ada mengerem) di mana data akan diperoleh dari pemain. Kami menggunakan data dari pemain yang dapat mengontrol permainan mobil balap dengan baik atau tidak pernah menabrak tembok dan memiliki waktu putaran yang cepat. Tujuan dari penelitian ini adalah untuk memberikan metode pengereman alternatif untuk RGSK yang dapat memberikan waktu putaran yang cepat namun tidak mempengaruhi FPS game dan tanpa perlu menentukan atau mengubah parameter apa pun di setiap trek. Hasil pengujian menggunakan RGSK v1.1.0a di Unity Game Engine menunjukkan bahwa metode yang diusulkan dapat menjadi metode alternatif dalam keputusan pengereman RGSK. NPC kami mempunyai waktu putaran yang lebih cepat dan mampu mencegah kendaraan agar tidak menabrak dinding luar tanpa menjatuhkan FPS game (Frame per Detik).Kata kunci: Keputusan Pengereman, Racing Game Starter Kit, Naïve Bayes, Pembelajaran Mesin, Unity Engine
Dehazing Citra Kabut Gunung Berapi Kelud Dengan Color Attenuation Prior Dan Adaptive Gamma Correction Oddy Virgantara Putra; Aziz Musthafa
Fountain of Informatics Journal Vol 4, No 2 (2019): November
Publisher : Universitas Darussalam Gontor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21111/fij.v4i2.3511

Abstract

AbstrakVisibilitas citra luar ruangan yang ditangkap dalam cuaca buruk seringkali menurun karena adanya kabut, badai pasir, dan sebagainya. Visibilitas yang buruk, yang disebabkan oleh fenomena di atmosfer, menjadi faktor penyebab gagalnya aplikasi visi komputer, seperti sistem pengenalan objek luar, sistem deteksi rintangan atau sistem pengawasan video. Sejak letusan terakhir gunung Kelud, telah dipasang kamera CCTV untuk mengamati kawah danau dan sekitarnya. Akan tetapi, kamera pengamat mengalami gangguan dikarenakan adanya kabut. Tidak hanya itu, penghilangan kabut dari satu citra dengan struktur yang rumit, efek halo, dan distorsi warna adalah hal yang menantang teknik image recovery. Penelitian ini bertujuan mereduksi kabut dan meningkatkan visibilitas dari citra berkabut. Pada artikel ini, diusulkan metode dehazing baru yang menggabungkan metode Color Attenuation Prior (CAP) dan Adaptive Gamma Correction (AGC). Metode ini dibagi menjadi tiga modul utama, yaitu modul estimasi kedalaman (DispE), modul peningkatan peta transmisi (TME), dan modul restorasi (ImRec). Modul DispE yang diusulkan memanfaatkan teknik estimasi kedalaman dari CAP. Sedangkan modul TME mengadopsi teknik AGC. Dengan demikian, efek halo pada citra dapat dihindari dan estimasi peta transmisi yang efektif dapat dicapai. Selanjutnya, modul ImRec menggunakan peta transmisi hasil keluaran dari TME untuk memperbaiki distorsi warna citra kawah. Hasil eksperimental menunjukkan bahwa metode yang diusulkan bisa mengurangi kabut tanpa menimbulkan efek halo dan distorsi warna. Penelitian berikutnya difokuskan pada metode berbasis pembelajaran mesin.Kata kunci: adaptive gamma correction, color attenuation prior, dehazing, kabut. Abstract[Single Kelud Volcano Lake Crater Image Dehazing Using Color Attenuation Prior and Adaptive Gamma Correction] Visibility of outdoor images captured in bad weather often decreases due to fog, sandstorms, and so on. Poor visibility, caused by atmospheric phenomena, is a factor in the failure of computer vision applications, such as external object recognition systems, obstacle detection systems or video surveillance systems. Due to the last eruption, CCTV cameras have been installed on top of Mt. Kelud summit to observe the crater of the lake and its surroundings. However, the observation camera experienced interference due to the fog. Not only that, the removal of fog from an image with complicated structures, halo effect, and color distortion is challenging image recovery techniques. This study aims to reduce the fog and improve the visibility of the foggy image. In this article, a new dehazing method is proposed that combines the Color Attenuation Prior (CAP) and Adaptive Gamma Correction (AGC) methods. This is divided into three main modules, namely the depth estimation module (DispE), the transmission map enhancement module (TME), and the restoration module (ImRec). The proposed DispE module utilizes depth estimation techniques from CAP. While the TME module adopts the AGC technique. Thus, the halo effect on the image can be avoided and the estimation of an effective transmission map can be achieved. Furthermore, the ImRec module uses a transmission map output from TME to correct the color distortion of the crater image. Experimental results show that the proposed method can reduce haze without causing halo and color distortion effects. Subsequent research focused on machine learning based methods.Keywords: adaptive gamma correction, color attenuation prior, dark channel prior, dehazing, haze.

Page 1 of 1 | Total Record : 6