Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Relationship Between HbA1c Levels and Severity of COVID-19 Patients with Diabetes Mellitus at Haji General Hospital, East Java Province Ambar, Nabil Salim; Rahmadina, Muhimmatul Aaliyah; Subkhan, Mohammad; Ariana, Audy Meutia
Qanun Medika - Jurnal Kedokteran FK UMSurabaya Vol 9 No 01 (2025): Qanun Medika Vol 09 No 01 January 2025
Publisher : Universitas Muhammadiyah Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30651/jqm.v9i01.23444

Abstract

One of the factors influencing SARS-CoV-2 infection is comorbidity. Diabetes mellitus is a comorbidity with a high mortality rate. Poor glucose control in patients can affect cellular immune responses and increase morbidity and mortality associated with infections. The severity of COVID-19 is classified into 5 levels: asymptomatic, mild, moderate, severe, and critical. HbA1c is a good test for identifying the diabetes status of COVID-19 patients. According to the American Diabetes Association, HbA1c levels are considered controlled if <7% and uncontrolled if ≥7%. This study aims to analyze HbA1c levels in COVID-19 patients with diabetes mellitus from 2020 to 2022. This study uses the productive age category (15-64 years). To determine the relationship between HbA1c levels and the severity of COVID-19 patients with diabetes mellitus at Haji General Hospital, East Java Province, from 2020 to 2022. This research employs a cross-sectional, analytical observational method with a consecutive sampling technique involving 96 hospitalized COVID-19 patients. Data collection was conducted through medical record observation. The majority of the samples were male, with an average age of 53 years. The Fisher Exact Test yielded a p-value of 0.13, which is greater than the significance level (0.05), indicating no significant relationship between HbA1c levels and the severity of COVID-19 in diabetic patients. There is no significant relationship between HbA1c levels and the severity of COVID-19 in diabetic patients at Haji General Hospital, East Java Province.
Transformasi Patologi Klinik melalui Kecerdasan Buatan: Sebuah Tinjauan Pustaka Sistematis Ambar, Nabil Salim; Utama, Muhamad Reza; Kahar, Hartono
JurnalMU: Jurnal Medis Umum Vol 1 No 3 (2024): Jurnal Medis Umum
Publisher : Universitas Muhammadiyah Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30651/jmu.v1i3.24771

Abstract

Kecerdasan buatan (Artificial Intelligence/AI) telah mengalami perkembangan signifikan dalam bidang patologi klinik selama dekade terakhir. AI mendukung analisis data kompleks dalam histopatologi, meningkatkan efisiensi diagnosis, dan mempercepat pengambilan keputusan klinis. Artikel ini bertujuan untuk mengulas peran AI dalam patologi klinik, termasuk penerapannya dalam diagnostik, prediksi klinis, dan personalisasi pengobatan. Metode yang digunakan adalah tinjauan pustaka sistematis dengan mencakup literatur dari database utama dalam 10 tahun terakhir. Hasil menunjukkan bahwa AI mampu meningkatkan akurasi diagnostik hingga 96,3% dan spesifisitas hingga 93,3%, serta mempercepat workflow klinis. Meskipun demikian, terdapat tantangan seperti regulasi, etika, dan kesenjangan digitalisasi yang perlu diatasi. AI menawarkan peluang besar untuk transformasi patologi klinik menuju era pengobatan presisi.