Claim Missing Document
Check
Articles

Found 5 Documents
Search

Kajian Pendekatan Binary Log dalam Change Data Capture Muhammad Febrian Rachmadhan Amri; I Made Sukarsa; I Ketut Adi Purnawan
Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi) Vol. 5, No. 2 Agustus 2017
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat Universitas Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24843/JIM.2017.v05.i02.p02

Abstract

The online business era causes the form of transactions to occur so quickly that the information stored in the data warehouse becomes invalid. Companies are required to have a strong system, which is a system that is real time in order to be able to perform data loading into the media repository that resides on different hosts in the near-real time. Data Warehouse is used as a media repository of data that has the nature of subject-oriented, integrated, time-variant, and is fixed. Data Warehouse can be built into real time management with the advantages possessed and utilize Change Data Capture. Change Data Capture (CDC) is a technique that can be used as problem solution to build real time data warehousing (RTDW). The binary log approach in change data capture is made to record any data manipulation activity that occurs at the OLTP level and is managed back before being stored into the Data Warehouse (loading process). This can improve the quality of data management so that the creation of the right information, because the information available is always updated. Testing shows that Binary Log approach in Change Data Capture (BinlogCDC) is able to generate real time data management, valid current information, dynamic communication between systems, and data management without losing any information from data manipulation.
Internet Service Provider User Customer Lifetime Segmentation Analysis using RFM and K-Means Algorithm Amri, Muhammad Febrian Rachmadhan; Umam, Mohamad Hafidhul; Wibowo, Arief; Ramayu, I Made Satrya
Sinkron : jurnal dan penelitian teknik informatika Vol. 8 No. 1 (2024): Articles Research Volume 8 Issue 1, January 2024
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v9i1.13024

Abstract

The characteristics of each customer can be segmented using RFM (Recency, Frequency, Monetary) which means customer's last transaction time, number of customer transactions, and amount of money spent. The Lifetime and K-Means methods are used to perform the process of clustering or grouping customers based on segmentation through RFM. The results will be divided into 4 clusters namely Gold, Silver, Platinum and Diamond. The results of clustering are visualized with graphs and cluster tables containing the results of segmentation and clusters or groups of From the results obtained from the previous stage, of the 104 customers in the Retail & Distribution Services (RDS) sector, 4 segments resulted in 43 customers with Platinum class, 39 customers with gold class, 14 customers with silver class, and 8 customers with platinum level. The most popular services services or product is high speed dedicated internet services, VPN IP package, and service network package as top 3 results. The largest amount of revenue services or product is transponder full time use services, support network and contact center application as top 3 results.
Student Perceptions of the Implementation of Big Data in Sinergy as Learning Optimization at the Bali Institute of Design and Business Satrya Ramayu, I Made; Manurung, Handrean; Rachmadhan Amri, Muhammad Febrian; Mahendra, Gede Surya; Yoga Indrawan, I Putu
International Journal of Engineering, Science and Information Technology Vol 4, No 1 (2024)
Publisher : Malikussaleh University, Aceh, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52088/ijesty.v4i1.611

Abstract

The current digital era is characterized by exponential data growth, presenting unprecedented opportunities and challenges in extensive data analysis. Data's increasing complexity and volume demand more efficient and effective analysis methods. In overcoming this challenge, big data technology is an innovative solution in data analysis. Semantic technology enriches the data modeling process by providing deeper context and meaning and facilitates more intuitive and accurate analysis, which is critical in managing diverse big data. The use of big data is an essential aspect of the learning system in information technology, especially at the Bali Design and Business Institute. This research aims to describe the implementation of big data on the Synergy platform as an effort to optimize learning at the Bali Design and Business Institute based on a literature review. Information technology that continues to develop has changed the learning paradigm by adopting Big Data in the context of e-learning. Synergy, as an innovative e-learning platform, has the potential to use Big Data to increase the personalization and effectiveness of learning for students. This research takes a qualitative approach by analyzing relevant literature and discussing the use of big data in education and e-learning. This literature review aims to understand how implementing Big Data can influence learning interactions, academic decision-making, and the development of adaptive learning strategies in educational environments. The literature review results show that using Big Data in e-learning can strengthen the personalization of learning, improve academic predictions, and provide deeper insight into student learning behavior. The implications of this research provide a solid theoretical basis for developing strategies for implementing Big Data at Synergy so that it can support improving the quality of learning at the Bali Institute of Design and Business.
Pemanfaatan Random Forest untuk Prediksi Ketepatan Waktu Kelulusan Mahasiswa Studi Kasus: Institut Desain dan Bisnis Bali Puspa, Gede; Rachmadhan Amri, Muhammad Febrian; Nugraha, Made Prastha
JURNAL INFORMATIKA DAN KOMPUTER Vol 9, No 2 (2025): Juni 2025
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat - Universitas Teknologi Digital Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26798/jiko.v9i2.1886

Abstract

Institut Desain dan Bisnis Bali, setiap tahun menghasilkan lulusan mahasiswa sesuai bidang yang ditempuhnya, dalam kurun waktu penyelesaian studi tepat waktu yaitu 4 (empat) tahun. Namun pada kurun waktu 3 (tiga) tahun terdapat penurunan jumlah presentase mahasiswa yang lulus . Hal ini tentu merupakan permasalah serius yang perlu ditindak lanjuti karena dapat berdampak pada nilai akreditasi perguruan tinggi. Belum diketahui penyebab pasti keterlambatan studi mahasiswa yang tidak lulus tepat waktu. Perlu adanya penggalian data yang masih tersembunyi serta pengolahan data sehingga menjadi pengetahuan dan informasi baru yang dapat dimanfaatkan untuk menindak lanjuti mahasiswa yang bermasalah pada tahun akademik berjalan. Penelitian ini bertujuan untuk memprediksi tingkat kelulusan mahasiswa tepat waktu dengan metode random forest untuk mengetahui metode yang lebih unggul dalam kasus tersebut. Dari penelitian ini yaitu sistem dapat memprediksi kelulusan mahasiswa tepat waktu dengan algoritma terbaik.
ANALISIS PENGARUH SOSIAL MEDIA MARKETING DAN DIRECT MARKETING TERHADAP MINAT PEMBELIAN PADA CV. ASIA LAND PROPERTY Faniansyah, Ilham; Amri, Muhammad Febrian Rachmadhan; Pratama, Putu Yogi Agustia
Bisnis-Net Vol 8, No 2: DESEMBER 2025
Publisher : Universitas Dharmawangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46576/bn.v8i2.6801

Abstract

Dengan berkembangnya teknologi digital saat ini telah mendorong industri properti untuk menggunakan strategi pemasaran yang lebih adaptif dalam menjangkau target pasar, salah satunya dengan melalui media sosial dan pemasaran secara langsung. Penelitian ini bertujuan untuk menganalisis pengaruh Social Media Marketing & Direct Marketing terhadap minat pembelian pada CV. Asia Land Property, sebuah perusahaan agent properti yang berlokasi di Bali. Metode penelitian yang digunakan adalah kuantitatif dengan teknik pengumpulan data kuesioner yang disebarkan kepada calon pembeli yang pernah berinteraksi dengan tim sales Asia Land Property melalui Whatsapp. Hasil analisis regresi linier berganda menunjukan bahwa baik Social Media Marketing maupun Direct Marketing berpengaruh positif dan signifikan terhadap minat pembelian konsumen. Strategi pemasaran berbasis konten video visual yang menarik dan komunikasi langsung secara personal terbukti mampu meningkatkan daya tarik calon pembeli terhadap produk properti yang ditawarkan. Penelitian ini memberikan kontribusi bagi pengembangan strategi pemasaran digital pada sektor properti, dan juga menjadi refrensi bagi perusahaan dalam memaksimalkan penggunaan media sosial dan teknologi komunikasi untuk mendorong peningkatan konversi penjualan.