Claim Missing Document
Check
Articles

Found 3 Documents
Search

A Small Amount of Sn Addition Effect to Cu-15Zn Alloy on Structure, Microstructure, Hardness, Corrosion Resistance, and Antibacterial Activity Basori, Imam; Sari, Yunita; Prasetya, Dendy Wardhana; Susetyo, Ferry Budhi; Alias, Juliawati; Budi, Setia; Yudanto, Sigit Dwi; Hasbi, Muhammad Yunan; Situmorang, Evi Ulina Margareta; Edbert, Daniel
Science and Technology Indonesia Vol. 10 No. 2 (2025): April
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.2.443-451

Abstract

Cu-15Zn alloy is widely used as a heat exchanger pipe. CuZn alloy was also used for cardiovascular implant applications. Several problems have been found in that alloy, such as less corrosion resistance. Therefore, various Sn (0.2, 0.7, 1, and 2 wt.%) were added to Cu-15Zn alloy in the present research to enhance corrosion resistance. Afterwards, the alloy was homogenized at 800 °C for 2 hours. Several investigations were conducted, such as structure, microstructure, hardness, corrosion resistance, and bacterial activity, using XRD, Optical microscope, Vickers hardness, Potentiostat equipment, and Digital camera. More Sn content leads to an increase in volume and a decrease in hardness. Presenting Sn in the alloy does not influence the phase in the alloy microstructure. The highest Sn content in the alloy promoted a more positive value of the alloy, indicating that the sample is more cathodic, probably due to the protective layer on the surface. A concentration of 1 wt.% Sn exhibits the most effective antibacterial effect probably due to the small crystallite size.
Effect of Furnace Heating Temperature on the Hardness and Corrosion Resistance of Plain Carbon Steel Sopiyan, Sopiyan; Syaripuddin, Syaripuddin; Syamsuir, Syamsuir; Ansori, Fuad; Hasbi, Muhammad Yunan; Lubi, Ahmad; Susetyo, Ferry Budhi
MOTIVECTION : Journal of Mechanical, Electrical and Industrial Engineering Vol 7 No 3 (2025): Motivection : Journal of Mechanical, Electrical and Industrial Engineering
Publisher : Indonesian Mechanical Electrical and Industrial Research Society (IMEIRS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46574/motivection.v7i3.466

Abstract

Microstructure modification of the plain carbon steel usually enhances hardness and corrosion resistance. Therefore, in the present research, the microstructure of plain carbon steel is modified by heating it in an electric furnace using various temperatures and then quenching it in engine oil to enhance corrosion resistance and hardness. Several characterizations were conducted, such as microstructure, hardness, and electrochemical behavior. The microstructure evolution indicates a clear transformation of martensite morphology with decreasing austenitizing temperature. Decreasing the furnace's heating before quenching could increase the specimens' hardness and corrosion resistance, with values around 586.36 HV and 0.135 mmpy. Therefore, the optimal heat treatment condition for plain carbon steel components in marine environments was found at 800 °C based on the results of this study.
Structural, Electrochemical, Bacterial Activity, Hardness, and Thermal Properties of Mg Alloy with Various Zn Contents Premono, Agung; Basori, Imam; Sukarno, Ragil; Susetyo, Ferry Budhi; Alhamidi, A. Ali; Anugrah, Hanif Setia; Muqafillah, Mochammad Fajr Dzakwan; Yudanto, Sigit Dwi; Hasbi, Muhammad Yunan; Situmorang, Evi Ulina Margareta; Edbert, Daniel; Mutiara, Etty; Kriswarini, Rosika; Jamaludin, Agus; Ajiriyanto, Maman Kartaman; Rosyidan, Cahaya
Science and Technology Indonesia Vol. 11 No. 1 (2026): January
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2026.11.1.96-108

Abstract

Magnesium (Mg) alloy is used for various medical purposes, such as bone implants. In the present study, MgAlSixZn alloys were created utilizing the gravity casting by adding various Zinc (Zn) (x is 0, 0.5, 1.2, and 1.7 wt.%) and then homogenized at 400 ◦C for around two hours. MgAlSixZn as homogenized samples were investigated for microstructure, phase structure, electrochemical behavior, surface morphology, bacterial activity, hardness, and thermal behavior using an optical microscope, XRD, Potentiostat, SEM-EDS, digital camera, Vickers hardness test, and Thermogravimetric apparatus, respectively. Several findings include that increasing Zn content implies a grain growth inhibition mechanism facilitated by Zn segregation at grain boundaries, increased corrosion rates, a rise in the hardness, and increased weight loss. It should be noted that the increase in the corrosion rate and weight loss occurs linearly for Zn addition in the Mg alloy until 1.2 wt.%. An increase in Zn concentration causes the peak shift in MgAlSi-based alloy samples, but no crystallographic orientation is apparent. At the end, the highest corrosion rate and inhibition area are observed in MgAlSi1.2Zn, which indicates that it is suitable for biodegradable orthopedic wire.